博客专栏  >  综合   >  特征提取与选择

特征提取与选择

主要讲述各种特征提取算法和特征选择算法

关注
0 已关注
7篇博文
  • 特征选择之遗传算法

    基于遗传算法的特征选择是一种wrapper方法,该算法是以支持向量机分类器的识别率作为特征选择的可分性判断依据。在遗传算法中,对所选择的特征用[0,1]二进制串来初始化,由于二进制数{0,1}是等概率...

    2017-05-22 12:21
    926
  • PCA原理及其R实现

    主成分分析法主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,...

    2017-04-18 11:19
    450
  • 线性判别分析(LDA)

    线性判别分析(LDA)是一种监督学习方法,和主成分分析(PCA)一样,其主要用来降维。有些资料也把LDA称为Fisher线性判别(FLD)。LDA在机器学习,图像识别,数据挖掘等领域有着广泛的应用。L...

    2017-05-09 14:33
    196
  • 特征选择之基于相关性的特征选择(CFS)

    此为本人学习笔记,转载请劳烦告知!特征选择特征抽取整合原始特征,这样可能产生一些新的特征,而特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征。特征提取主要用于图像分析,信号处理和信息检索领域...

    2017-05-10 16:28
    321
  • 特征选择之relief及reliefF算法

    relief算法Relief算法最早由Kira提出,最初局限于两类数据的分类问题。Relief算法是一种特征权重算法(Feature weighting algorithms),根据各个特征和类别的相...

    2017-05-11 12:01
    228
  • 特征选择之最小冗余最大相关性(mRMR)

    最小冗余最大相关性(mRMR)是一种滤波式的特征选择方法,由Peng et.al提出。 用途:图像识别,机器学习等 一种常用的特征选择方法是最大化特征与分类变量之间的相关度,就是选择与分类变量拥有...

    2017-05-12 17:37
    1149
  • 特征选择之支持向量机递归特征消除(SVM-RFE)

    支持向量机递归特征消除(下文简称SVM-RFE)是由Guyon等人在对癌症分类时提出来的,最初只能对两类数据进行特征提取。它是一种基于Embedded方法。支持向量机支持向量机广泛用于模式识别,机器学...

    2017-05-15 14:01
    1340

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部