博客专栏  >  综合   >  机器学习

机器学习

虽然深度学习算法在如图像,语音和自然语言处理等诸多领域取得优异效果,但是传统的机器学习算法由于其完整的理论性在很多方面依然起着不可替代的作用,该专栏将较多的介绍机器学习在计算机视觉上的应用,编程语言以C++和Python为主。希望与大家一同学习交流。

关注
4 已关注
17篇博文
  • Logistic回归损失函数证明

    在理解Logistic回归算法原理中我们指出了Logistic回归的损失函数定义(在这里重新约定符号): 对于单个样本而言,令为样本的期望输出,记为y;为样本的实际输出,记为y_hat,那么Logi...

    2017-09-25 09:54
    400
  • 学习KNN(三)KNN+HOG实现手写数字识别

    在学习KNN(二)KNN算法手写数字识别的OpenCV实现我们直接将像素值作为特征,实现了KNN算法的手写数字识别问题,并得到了较好的准确率,但是就像其他机器学习算法一样,KNN的对象同样是特征,所以...

    2017-09-25 14:00
    467
  • 学习KNN(二)KNN算法手写数字识别的OpenCV实现

    在OpenCV的安装文件路径/opencv/sources/samples/data/digits.png下,有这样一张图: 图片大小为1000*2000,有0-9的10个数字,每5行为一个数字...

    2017-09-13 15:38
    202
  • 学习KNN(一) 图像分类与KNN原理

    简介KNN算法,即K近邻算法是一种监督学习算法,本质上是要在给定的训练样本中找到与某一个测试样本A最近的K个实例,然后统计k个实例中所属类别计数最多的那个类,就是A的类别。 从上面一句话中可以看出,...

    2017-09-11 22:47
    549
  • Hinge loss

    原文链接:Hinge lossHinge loss在机器学习中,hinge loss常作为分类器训练时的损失函数。hinge loss用于“最大间隔”分类,特别是针对于支持向量机(SVM)。对于一个期...

    2017-07-24 21:17
    576
  • 学习SVM(五)理解线性SVM的松弛因子

    学习SVM(一) SVM模型训练与分类的OpenCV实现 学习SVM(二) 如何理解支持向量机的最大分类间隔 学习SVM(三)理解SVM中的对偶问题 学习SVM(四) 理解SVM中的支持向量(S...

    2017-07-24 14:58
    488
  • 理解交叉熵作为损失函数在神经网络中的作用

    交叉熵的作用通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便...

    2017-06-18 15:59
    2156
  • 学习SVM(一) SVM模型训练与分类的OpenCV实现

    学习SVM(一) SVM模型训练与分类的OpenCV实现 学习SVM(二) 如何理解支持向量机的最大分类间隔 学习SVM(三)理解SVM中的对偶问题 学习SVM(四) 理解SVM中的支持向量(S...

    2017-03-29 21:47
    4944
  • 学习SVM(二) 如何理解支持向量机的最大分类间隔

    学习SVM(一) SVM模型训练与分类的OpenCV实现 学习SVM(二) 如何理解支持向量机的最大分类间隔 学习SVM(三)理解SVM中的对偶问题 学习SVM(四) 理解SVM中的支持向量(S...

    2017-06-24 16:01
    975
  • 学习SVM(三)理解SVM中的对偶问题

    网上有很多关于SVM的优秀博客与其他学习资料,而个人感觉本系列博客与其他关于SVM的文章相比,多了一些细节的证明,比如线性分类器原理,支持向量原理等等。 同样是SVM,在《支持向量机导论》中有170...

    2017-07-12 13:56
    340
  • 学习SVM(四) 理解SVM中的支持向量(Support Vector)

    我们在开始接触SVM时肯定听到过类似这样的话,决定决策边界的数据叫做支持向量,它决定了margin到底是多少,而max margin更远的点,其实有没有无所谓。 然后一般会配一张图说明一下哪些是支持...

    2017-06-25 16:03
    737
  • 理解激活函数在神经网络模型构建中的作用

    什么是激活函数在生物学家研究大脑神经元工作机理时,发现如果一个神经元开始工作时,该神经元是一种被激活的状态,我想着大概就是为什么神经网络模型中有一个单元叫做激活函数。 那么什么是激活函数呢,我们...

    2017-06-01 12:02
    1626
  • 理解梯度下降在机器学习模型优化中的应用

    写在开头:其实我也只是在学习的过程中写了这篇博客,非常高兴可以得到各位的认可,在后续学习过程中,如果发现有问题的地方会不断的完善这些内容。下面是这么博客一次较大的补充,用一个已知的模型先理解最简单的情...

    2017-05-24 22:44
    2178
  • K-means算法及OpenCV实现

    K-means算法MacQueen在1967年提出的,是最简单与最常见数据分类方法之一并且最为一种常见数据分析技术在机器学习、数据挖掘、模式识别、图像分析等领域都用应用。从机器学习的角度看,K-mea...

    2017-04-11 15:48
    1050
  • 特征提取方法(一):HOG原理及OpenCV实现

    方向梯度直方图(Histogram of Oriented Gradient, HOG)于2015年提出,是一种常用的特征提取方法,HOG+SVM在行人检测中有着优异的效果。HOG基本思想: 在一幅...

    2017-04-28 15:24
    1713
  • 深度学习与机器学习中开源图片数据库汇总

    数据的准备工作是训练模型前的必要工作,显然这也是非常耗时的,所以在入门阶段我们完全可以用现有的开源图片库快速完成前期的准备工作:ImageNetImageNet是根据WordNet层次结构(目前只有名...

    2017-05-08 16:26
    1847
  • 理解Logistic回归算法原理与Python实现

    一般的机器学习的实现大致都是这样的步骤: 1.准备数据,包括数据的收集,整理等等 2.定义一个学习模型(learning function model),也就是最后要用来去预测其他数据的那个模型 ...

    2017-05-19 12:19
    1044

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部