博客专栏  >  研发管理   >  机器学习

机器学习

专注于机器学习相关的算法的原理以及实践经验的总结,以及相关特定领域的机器学习算法的应用技巧和思考。同时,会总结一些算法训练的参数调优以及各种数据分布的实际情况的解决方案的共享……

关注
29 已关注
22篇博文
  • 无监督聚类算法该如何评价

    学过机器学习的小伙伴应该都很清楚:几乎所有的机器学习理论与实战教材里面都有非常详细的理论化的有监督分类学习算法的评价指标。例如:正确率、召回率、精准率、ROC曲线、AUC曲线。但是几乎没有任何教材上有...

    2017-07-03 21:57
    3305
  • AI大行其道,你准备好了吗?—谨送给徘徊于转行AI的程序员

    前言  近年来,随着 Google 的 AlphaGo 打败韩国围棋棋手李世乭之后,机器学习尤其是深度学习的热潮席卷了整个IT界。所有的互联网公司,尤其是 Google 微软,百度,腾讯等巨头,无不在...

    2017-07-09 16:13
    18796
  • 详解数据挖掘与机器学习的区别与联系

    0、为什么写这篇博文  最近有很多刚入门AI领域的小伙伴问我:数据挖掘与机器学习之间的区别于联系。为了不每次都给他们长篇大论的解释,故此在网上整理了一些资料,整理成此篇文章,下次谁问我直接就给他发个链...

    2017-07-16 16:50
    1335
  • 超参数的选择与交叉验证

    1. 超参数有哪些  与超参数对应的是参数。参数是可以在模型中通过BP(反向传播)进行更新学习的参数,例如各种权值矩阵,偏移量等等。超参数是需要进行程序员自己选择的参数,无法学习获得。   常见的...

    2017-07-16 22:33
    241
  • 机器学习中的数据不平衡解决方案大全

    在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。       数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从...

    2017-06-09 19:37
    17512
  • 深度神经网络训练的必知技巧

    本文主要介绍8种实现细节的技巧或tricks:数据增广、图像预处理、网络初始化、训练过程中的技巧、激活函数的选择、不同正则化方法、来自于数据的洞察、集成多个深度网络的方法。1. 数据增广       ...

    2017-04-29 15:06
    5624
  • Scikit-learn实战之SVM回归分析、密度估计、异常点检测

    1. SVM回归       SVM的支持向量的方法能够被扩展以解决回归问题。这种方法被称之为SVR(Support Vector Regression 支持向量回归)。该模型是由SVC(支持向量分类...

    2016-11-27 20:32
    2030
  • Scikit-learn实战之SVM分类

    Support vector machines (SVMs) 是一系列的有监督的学习方法,主要用于分类、回归和异常点检测。1. SVM的主要优点如下: 在高维空间有效; 当样本空间的维度比样本数高时任...

    2016-11-27 18:05
    1996
  • Scikit-learn实战之聚类-Kmeans

    1. 聚类模块的简述       在Scikit-learn中,对于未标记数据的执行聚类需要使用 sklearn.cluster 模块。        每一个聚类算法有两个变量组成:一个是类,它实...

    2016-11-29 19:01
    364
  • Sckit-learn之数据预处理

    1. 数据预处理在机器学习中的重要性      在Scikit-learn中的sklearn.preprocessing包提供了一些公共的实用函数和转换类来将特征行向量转换成更适合于接下来的估计的表示...

    2016-11-29 22:46
    346
  • Sckit-learn之朴素贝叶斯

    1. 朴素贝叶斯方法概述      朴素贝叶斯方法是一系列有监督学习算法组成的,这些算法基于应用贝叶斯理论并带有“naive”的假设:所有特征之间两两独立。给定一个类变量 yy 和一个独立的特征向量集...

    2016-12-04 18:30
    407
  • Scikit-learn之决策树

    1. 决策树概述       决策树是一个非参数的监督式学习方法,主要用于分类和回归。算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型。如下图所示,决策树通过一系列if-the...

    2016-12-05 20:28
    389
  • Scikit-learn实战之线性模型

    下面是一系列的用于回归的方法,这些方法的目标值(target value)是由输入变量的线性组合而成。在数学概念上,如果 y^\hat y 是预测值: 在整个模块中,我们指定向量 为系数,并且 ...

    2016-12-10 21:15
    499
  • Scikit-learn实战之最近邻算法

    1. 最近邻的概念       sklearn.neighbors 提供了基于最近邻的无监督和有监督学习方法的功能。无监督最近邻是许多其他学习方法的基础,尤其是流型学习和谱聚类。有监督的最近邻学习有两...

    2016-12-22 20:36
    329
  • 机器学习(一)集成学习

    1. 关于集成学习的概念       集成学习是机器学习中一个非常重要且热门的分支,是用多个弱分类器构成一个强分类器,其哲学思想是“三个臭皮匠赛过诸葛亮”。一般的弱分类器可以由决策树,神经网络,贝叶斯...

    2016-12-24 18:15
    286
  • 机器学习(二)Apriori算法

    最近看了《机器学习实战》中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集)。正如章节标题所示,这两章讲了无监督机器学习方法中的关联分析问题。关...

    2016-12-25 16:27
    602
  • 机器学习常见算法优缺点

    1. K近邻       算法采用测量不同特征值之间的距离的方法进行分类。 1.1 优点 简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归; 可用于数值型数据和离散型数据; ...

    2016-12-28 17:50
    924
  • 机器学习(四)经验风险与结构风险

    1. 偏差与方差(bias and variance)      在回归问题中,我们用一个简单的线性模型来拟合样本,称为线性回归,如图1;或者用更复杂,高维的函数来拟合,比如二次函数得到图2,六次函数...

    2017-01-03 20:32
    447
  • 机器学习中Bagging和Boosting的区别

    Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。       首先...

    2017-05-19 19:27
    670
  • BP神经网络的原理及推导

    首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解)。当网络的层次大于等于3层(输入层+隐藏层(大于...

    2017-05-24 21:35
    623
img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部