博客专栏  >  研发管理   >  机器学习

机器学习

专注于机器学习相关的算法的原理以及实践经验的总结,以及相关特定领域的机器学习算法的应用技巧和思考。同时,会总结一些算法训练的参数调优以及各种数据分布的实际情况的解决方案的共享……

关注
34 已关注
33篇博文
  • 燕哥CSDN免费视频课程

    前言  对于机器学习,很多人的观点是:机器学习技术是今后所有技术人员都绕不过的一个门槛。 那么,作为一名对机器学习心有向往的程序员,我们该以什么样的姿势开始呢?  CSDN知名博主们开设了系列免费直播...

    2017-09-04 23:45
    1136
  • 深入浅出——基于密度的聚类方法

    本文原作者:微信公众号“燕哥带你学算法”团队的 祝烨 博士,目前在墨尔本从事博士后研究。“The observation of and the search forsimilarities and d...

    2017-09-10 23:31
    1275
  • 数据挖掘中的利器--XGBoost理论篇

    XGBoost是各种数据挖掘或机器学习算法类比赛中每个团队都会使用且精度相对最好的算法之一(Deep Learning算法除外)。也就是说,对于刚转向机器学习领域的同胞们,在掌握数据挖掘的基本常识概念...

    2017-08-18 21:50
    1865
  • SVM为什么走下“神坛”?

    点题:学界发现真理,产业界利用趋势。“神人”就是既发现了真理又掌握了趋势(To find the truth of nature in academic, and to make business a...

    2017-08-27 13:34
    2999
  • 用JAVA程序调用LibSVM API

    1. LibSVM简介       LibSVM是台湾著名教授陈智仁团队的杰作。具有各个语言版本的接口,包括C/C++、Java、Python、Matlab、C# 等等。这套库运算速度还是挺快的,可以...

    2017-01-03 21:04
    1067
  • Java 机器学习库Smile实战(一)SVM

    本文不会介绍SVM的基本原理,如果想了解SVM基本原理,请参阅相关书籍。1. 二分类       Smile 库的SVM类是一个泛型类型,默认情况下进行二分类,选择参数为核函数类型和惩罚项参数。imp...

    2017-01-16 22:42
    1377
  • Java 机器学习库Smile实战(二)AdaBoost

    1. AdaBoost算法简介      Boost 算法系列的起源来自于PAC Learnability(PAC 可学习性)。这套理论主要研究的是什么时候一个问题是可被学习的,当然也会探讨针对可学习...

    2017-01-19 21:27
    579
  • Windows下安装Scikit-Learn

    用Python做机器学习,最常用的库就是scikit-learn。接下来,我就介绍一下如何在Windows中安装并成功运行scikit-learn。1. 安装Python       首先,我们需要安...

    2017-04-22 15:15
    1252
  • 机器学习该如何入门

    引言  可能你对这个名字叫“机器学习”的家伙不是特别的了解,但是相信用过iPhone的同学都知道iPhone的语音助手Siri,它能帮你打电话,查看天气等等;相信大家尤其是美女童鞋都用过美颜相机,它能...

    2017-07-25 10:43
    5493
  • 朴素贝叶斯算法详解

    1. 引言     朴素贝叶斯算法(Naive Bayes)是机器学习中常见的基本算法之一,主要用来做分类任务的。它是基于贝叶斯定理与条件独立性假设的分类方法。对于给定的训练数据集,首先基于特征条件...

    2017-08-05 22:02
    671
  • 深度学习入门

    0、引言 近几年来人工智能越来越火,大家都已经知道了AlphaGo的威力,然而在其背后,从技术层面来说,深度学习功不可没。那么深度学习到底是什么,其与传统的机器学习之间又有什么样的关联。对于想入坑...

    2017-08-13 11:16
    3777
  • 无监督聚类算法该如何评价

    学过机器学习的小伙伴应该都很清楚:几乎所有的机器学习理论与实战教材里面都有非常详细的理论化的有监督分类学习算法的评价指标。例如:正确率、召回率、精准率、ROC曲线、AUC曲线。但是几乎没有任何教材上有...

    2017-07-03 21:57
    4253
  • AI大行其道,你准备好了吗?—谨送给徘徊于转行AI的程序员

    前言  近年来,随着 Google 的 AlphaGo 打败韩国围棋棋手李世乭之后,机器学习尤其是深度学习的热潮席卷了整个IT界。所有的互联网公司,尤其是 Google 微软,百度,腾讯等巨头,无不在...

    2017-07-09 16:13
    21549
  • 详解数据挖掘与机器学习的区别与联系

    0、为什么写这篇博文  最近有很多刚入门AI领域的小伙伴问我:数据挖掘与机器学习之间的区别于联系。为了不每次都给他们长篇大论的解释,故此在网上整理了一些资料,整理成此篇文章,下次谁问我直接就给他发个链...

    2017-07-16 16:50
    1848
  • 超参数的选择与交叉验证

    1. 超参数有哪些  与超参数对应的是参数。参数是可以在模型中通过BP(反向传播)进行更新学习的参数,例如各种权值矩阵,偏移量等等。超参数是需要进行程序员自己选择的参数,无法学习获得。   常见的...

    2017-07-16 22:33
    689
  • 机器学习中的数据不平衡解决方案大全

    在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。       数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从...

    2017-06-09 19:37
    18699
  • 深度神经网络训练的必知技巧

    本文主要介绍8种实现细节的技巧或tricks:数据增广、图像预处理、网络初始化、训练过程中的技巧、激活函数的选择、不同正则化方法、来自于数据的洞察、集成多个深度网络的方法。1. 数据增广       ...

    2017-04-29 15:06
    6483
  • Scikit-learn实战之SVM回归分析、密度估计、异常点检测

    1. SVM回归       SVM的支持向量的方法能够被扩展以解决回归问题。这种方法被称之为SVR(Support Vector Regression 支持向量回归)。该模型是由SVC(支持向量分类...

    2016-11-27 20:32
    2774
  • Scikit-learn实战之SVM分类

    Support vector machines (SVMs) 是一系列的有监督的学习方法,主要用于分类、回归和异常点检测。1. SVM的主要优点如下: 在高维空间有效; 当样本空间的维度比样本数高时任...

    2016-11-27 18:05
    3070
  • Scikit-learn实战之聚类-Kmeans

    1. 聚类模块的简述       在Scikit-learn中,对于未标记数据的执行聚类需要使用 sklearn.cluster 模块。        每一个聚类算法有两个变量组成:一个是类,它实...

    2016-11-29 19:01
    586
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部