博客专栏  >  综合   >  Python机器学习应用

Python机器学习应用

Python机器学习应用

关注
1 已关注
18篇博文
  • Python机器学习应用 | 期末大作业1(程序设计)

    1 题目本次实验为分类任务,实验数据在附件中,共有2个文件,data_train.txt、data_test.txt,分别用于训练和测试,在训练文件中数据有55列,前54列是样本的特征(输入数据),最...

    2017-07-04 13:09
    640
  • Python机器学习应用 | 无监督学习课程测验

    1单选(2分) 以下距离度量方法中,要对样本点的各个属性进行标准化的是: A.马氏距离 B.欧氏距离 C.曼哈顿距离 D.夹角余弦正确答案:A2单选(2分) 以下不属于无监督学习的算法是:...

    2017-06-09 23:03
    351
  • Python机器学习应用 | 监督学习课程测验

    1单选(2分) 假设,我们有如下分成三类的数据,使用KNN算法(k=4),计算点(6,5)所属的类别应是(欧式距离): A.不确定 B.类别1 C.类别2 D.类别3答案:C2单选(2分...

    2017-06-16 22:47
    267
  • Python机器学习应用 | 强化学习

    1 强化学习1、强化学习就是程序或智能体(agent)通过与环境不断地进行交互学习一个从环境到动作的映射,学习的目标就是使累计回报最大化。 2、强化学习是一种试错学习,因其在各种状态(环境)下需要尽...

    2017-07-02 17:56
    589
  • Python机器学习应用 | KNN实现手写识别

    1 任务介绍手写数字识别是一个多分类问题,共有10个分类,每个手写数字图像的类别标签是0~9中的其中一个数。例如下面这三张图片的标签分别是0,1,2。 本实例利用sklearn来训练一个K最近邻...

    2017-06-26 18:08
    465
  • Python机器学习应用 | MLP实现手写识别

    1 任务介绍手写数字识别是一个多分类问题,共有10个分类,每个手写数字图像的类别标签是0~9中的其中一个数。例如下面这三张图片的标签分别是0,1,2。 任务:利用sklearn来训练一个简单的全...

    2017-06-25 21:42
    497
  • Python机器学习应用 | 岭回归

    1 岭回归对于一般地线性回归问题,参数的求解采用的是最小二乘法,其目标函数如下: argmin||Xw−y||2argmin || Xw-y ||^2 参数w的求解,也可以使用如下矩阵方法进行: ...

    2017-06-30 10:53
    689
  • Python机器学习应用 | 多项式回归

    1 多项式回归多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式的回归分析方法。如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多...

    2017-06-24 14:16
    605
  • Python机器学习应用 | 线性回归

    1 线性回归线性回归(Linear Regression)是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 线性回归利用称为线性回归方程的最小平方函数对一个...

    2017-06-24 11:00
    447
  • Python机器学习应用 | 人体运动状态预测

    1 背景介绍可穿戴式设备的流行,让我们可以更便利地使用传感器获取人体的各项数据,甚至生理数据。 当传感器采集到大量数据后,我们就可以通过对数据进行分析和建模,通过各项特征的数值进行用户状态的判断,根...

    2017-06-23 19:02
    411
  • Python机器学习应用 | 基本分类模型

    1 K近邻分类器(KNN)KNN:通过计算待分类数据点与已有数据集中的所有数据点的距离,取距离最小的前K个点,根据“少数服从多数”的原则,将这个数据点划分为出现次数最多的那个类别。 1.1 skle...

    2017-06-23 13:33
    525
  • Python机器学习应用 | 监督学习

    1 监督学习的目标利用一组带有标签的数据,学习从输入到输出的映射,然后将这种映射关系应用到未知数据上,达到分类或回归的目的。 分类:当输出是离散的,学习任务为分类任务。 回归:当输出是连续的,学习...

    2017-06-23 09:41
    364
  • Python机器学习应用 | 降维——NMF方法及实例

    1 非负矩阵分解(NMF)1、非负矩阵分解(Non-negative Matrix Factorization ,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。 2、基本思想:给定...

    2017-06-29 22:24
    902
  • Python机器学习应用 | 降维——PCA方法及其应用

    1 主成分分析(PCA)1、主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。 2...

    2017-06-29 19:10
    687
  • Python机器学习应用 | 基于聚类的“图像分割”

    1 图像分割1、图像分割:利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。然后就可以将分割的图像中具有独特...

    2017-07-01 16:57
    897
  • Python机器学习应用 | 聚类——K-means方法及应用

    1 K-means聚类算法k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。其处理过程如下: 1.随机选择k个点作为初始的聚类中心; 2.对于剩下的点...

    2017-06-27 14:41
    516
  • Python机器学习应用 | 聚类——DBSCAN方法及应用

    1 DBSCAN密度聚类DBSCAN算法是一种基于密度的聚类算法: • 聚类的时候不需要预先指定簇的个数 • 最终的簇的个数不定DBSCAN算法将数据点分为三类: • 核心点:在半径Eps内含有...

    2017-06-27 15:03
    755
  • Python机器学习应用 | 无监督学习

    1 无监督学习利用无标签的数据学习数据的分布或数据与数据之间的关系被称作无监督学习。 有监督学习和无监督学习的最大区别在于数据是否有标签 无监督学习最常应用的场景是聚类(clustering)和降...

    2017-06-27 14:13
    678

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部