博客专栏  >  互联网   >  Machine Learning

Machine Learning

机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问,同时它也是人工智能的核心,未来前景,令人期待。

关注
4 已关注
21篇博文
  • 机器学习性能指标精确率、召回率、F1值、ROC、PRC与AUC

    精确率、召回率、F1、AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢。下面让我们分别来看一下这几个指标分别是什么意思。 针对一个二分类问题,将实例分成正类(po...

    2017-10-15 16:47
    387
  • 机器学习中的正则化技术L0,L1与L2范数

    使用机器学习算法过程中,如果太过于追求准确率,就可能会造成过拟合。使用正则化技术可以在一定程度上防止过拟合。首先来回顾一下过拟合的概念。 过拟合简单来说就是对于当前的训练数据拟合程度过高以至于模型失去...

    2017-10-05 15:32
    258
  • 贝叶斯网络

    贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础。一个贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DAG),由代表变量节点及连...

    2017-09-19 21:10
    163
  • 从最大似然到EM算法

    机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM...

    2017-09-18 15:57
    335
  • 聚类算法之层次聚类与密度聚类

    一、层次聚类 层次聚类方法对给定的数据集进行层次的分解,知道某种条件满足为止。层次聚类又可分为: 凝聚的层次聚类:AGNES算法 一种自底向上的策略,首先将每个对象做为一个簇,然后合并这些原子簇为...

    2017-09-15 20:29
    260
  • 聚类算法之K-means算法与聚类算法衡量指标

    聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,...

    2017-09-10 20:54
    187
  • XGBoost python调参指南

    在analytics vidhya上看到一篇,写的很好。因此打算翻译一下这篇文章,也让自己有更深的印象。具体内容主要翻译文章的关键意思。原文见:http://www.analyticsvidhya.c...

    2017-09-10 17:58
    373
  • 机器学习提升算法之Adaboost、GB、GBDT与XGBoost算法

    一、Gradient boosting(GB) 梯度提升    提升是一个机器学习技术,可以用于回归和分类问题,它每一步产生一个弱预测模型(如决策树),并加权累加到总模型中。如果每一步的弱预测模型生成...

    2017-09-09 22:11
    613
  • Bagging与随机森林

    一、Bagging算法 Bagging是并行集成学习方法最著名的代表,可以用来提高学习算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将它们组合成一个预测函数。Bagging...

    2017-09-04 22:20
    513
  • 决策树算法与剪枝处理

    一、决策树算法   决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。   决策树算法的核心思想就...

    2017-09-03 22:21
    292
  • 线性回归与岭回归python代码实现

    一、标准线性回归   在线性回归中我们要求的参数为: 详细的推导可以参见:http://blog.csdn.net/weiyongle1996/article/details/73...

    2017-08-31 16:51
    468
  • 斯坦福大学公开课机器学习课程(Andrew Ng)十特征选择

    课程概述: 1.VC维 2.模型选择 3.特征选择 一、VC维   对于一个模型来说,比如 logistic模型,如果有n 个feature,那么该模型会有 d=n+1个参数。虽然理论上说d个...

    2017-08-26 21:17
    486
  • 斯坦福大学公开课机器学习课程(Andrew Ng)九经验风险最小化

    课程概述: 1.偏差/方差(Bias/variance) 2.经验风险最小化(Empirical Risk Minization,ERM) 3.联合界引理与Hoeffding不等式 4.一致收敛(Un...

    2017-08-22 21:54
    622
  • 斯坦福大学公开课机器学习课程(Andrew Ng)八顺序最小优化算法

    课程概要: 1.核技法 2.软间隔分类器 3.SVM求解的序列最小化算法(SMO) 4.SVM应用 一.核技法 回忆一下上篇中得到的简化的最优问题,,#1: 定义函数ϕ(x)为向量之间的映射...

    2017-08-09 19:03
    164
  • 斯坦福大学公开课机器学习课程(Andrew Ng)七最优间隔分类器

    课程概要: 1.最优间隔分类器 2.原始/对偶问题 3.svn的对偶问题     在上篇中,我们提到了函数间隔与几何间隔,这两个定义是 svm 的基本定义,因为svn比较复杂,这里先简要介绍一下svn...

    2017-07-31 14:22
    666
  • 斯坦福大学公开课机器学习课程(Andrew Ng)六朴素贝叶斯算法

    课程概要:

    2017-07-28 08:16
    863
  • 斯坦福大学公开课机器学习课程(Andrew Ng)五生成学习算法

    课程概要: 1.生成学习算法(Generative learning algorithm) 2.高斯判别分析(GDA,Gaussian Discriminant Analysis) 3.GDA与...

    2017-07-16 22:35
    692
  • 斯坦福大学公开课机器学习课程(Andrew Ng)四牛顿方法与广义线性模型

    本次课所讲主要内容: 1、  牛顿方法:对Logistic模型进行拟合 2、 指数分布族 3、  广义线性模型(GLM):联系Logistic回归和最小二乘模型 一、牛顿方法        牛...

    2017-07-11 13:25
    1010
  • 斯坦福大学公开课机器学习课程(Andrew Ng)三欠拟合与过拟合

    概要 本节课的主要内容有: 1、  局部加权回归:线性回归的变化版本 2、  概率解释:另一种可能的对于线性回归的解释 3、  Logistic回归: 基于2的分类算法,也是第一个要学的分类算...

    2017-07-07 15:50
    764
  • 斯坦福大学公开课机器学习课程(Andrew Ng)二监督学习应用 梯度下降

    监督学习应用 梯度下降

    2017-06-27 11:34
    695

Deep Learning
3884
python
115288
大数据
1815607

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部