博客专栏  >  互联网   >  《Machine Learning》重点和难点

《Machine Learning》重点和难点

汤姆米切尔的经典书籍《Machine Learning》的学习辅导专栏,针对其中的重点与难点,做了相应的解答。供学习参考使用。

关注
3 已关注
4篇博文
  • ML的45问(4)——评估假设、贝叶斯与PAC可学习

    1. 评估假设的意义评估假设的3个意义: 确定哪个假设更具有普适性。 当前样本训练出的数据错误率的可信度是多少。 如何利用有限的数据,获得更好的假设。 2. 置信区间的计算前提: n>30 如果没有其...

    2017-06-04 21:41
    199
  • ML的45问(3)——神经网络与感知器法则、反向传播算法

    0. 写在前面今天我么你主要介绍关于人工神经网络的相关问题。1. 三种神经网络单元及其形式人工神经网络有3种基本的神经元,分别是感知器模型、线性单元和Sigmoid单元。1.1 感知器模型感知器模型是...

    2017-04-15 15:47
    244
  • ML的45问(2)——ID3算法详解

    1. 写在前面这次我们主要介绍关于决策树的相关问题,尤其是针对ID3算法的一些问题进行相应的解答。2. ID3算法过程ID3的能处理的数据都是离散值的。接下来我们看算法:创建Root结点 如果...

    2017-04-09 11:31
    589
  • ML的45问(1)——概念学习、归纳偏置与候选消除法

    0. 写在前面从这章开始,我们针对机器学习的45问进行一个个的解答,这45问来自于Tom M.Mitchell的机器学习一书。大家可以参考一下。希望这45个问题能够解决一些关于机器学习相关知识的疑惑。...

    2017-03-20 21:08
    246
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部