博客专栏  >  综合   >  Python大战人工智能

Python大战人工智能

深度学习方兴未艾,学习的人越来越多,但是深度学习可不是简单的调调参数就好了,或许TensorFlow或者TensorLayer, TFLearn 可以让很多人轻松地学会一些AI的编程,但是DL的永远都是数学和计算机的结合.那么还是让我们从工程出发,一起去探索新世界吧.

关注
5 已关注
21篇博文
  • Google提出的新型激活函数:Swish

    简介Swish是Google在10月16号提出的一种新型激活函数,其原始公式为:f(x)=x * sigmod(x),变形Swish-B激活函数的公式则为f(x)=x * sigmod(b * x),...

    2017-11-26 11:35
    243
  • 9.3 Trains and Evaluates the MNIST network using a feed dictionary

    简介这部分代码来自tensorflow的源码,代码中的注释相当的详细,假如对于9.2 你已经比较详细,那么我建议您运行这份源码示例.他会给你很好的帮助. 这份代码主要展示了projector模块(当...

    2017-10-31 11:15
    147
  • 9.2 mnist_with_summaries tensorboard 可视化展示

    tensorboard tensorflow中的可视化组件在新版本的tensorflow 中tensorboard已经被整合,无需下载.其执行是利用了一个封装的内置服务器,性能不错. 我们可以将神经...

    2017-10-23 22:25
    231
  • 9.1 mnist_softmax 交叉熵多分类器

    softmax交叉熵多分类器具体含义不再解释,这是一个我们比较常用的一个多分类器.深度学习的一大优点就是特征的自动构建,也正是因为该优点,使得分类器层显得不再那么重要,在Tensorflow的官方源码...

    2017-10-23 21:14
    407
  • 8.3 TensorFlow BP神经网络构建与超参数的选取

    前言之前的8.1 构建回归模型的重点在于计算图概念,8.2则介绍一些在整个流程中更靠后的部分:损失函数,优化函数,以及一些其他常用的函数.而本片中的重点在于构建计算图,与模型的训练与测试BP代码与讲解...

    2017-09-13 20:58
    399
  • 8.2 TensorFlow实现KNN与TensorFlow中的损失函数,优化函数

    前言8.1 mnist_soft,TensorFlow构建回归模型中对主要对计算图的概念与公式与计算图的转化进行了介绍,8.2则主要介绍一下TensorFlow中自带的几个算子,与优化函数,损失函数的...

    2017-09-13 22:42
    322
  • 8.1 mnist_soft,TensorFlow构建回归模型

    背景之前已经写了很多TensorFlow的基本知识,现在利用TensorFlow实现一些简单的功能,对原来的知识进行串联,并初步入门,该部分共包括三篇,分别实现的是回归模型,浅层神经网络,KNN。Te...

    2017-09-07 22:20
    308
  • 卷积神经网络(cnn)的体系结构

    译者注,本篇文章对卷积神经网络有很好的讲解,其内容有相较原文有部分增加与补充,阅读原文请点击这里 原作者的文章其实更利于读者对卷积本身的理解,但是实际上作者对卷积的现实意义的理解并没有解释的十分清楚,...

    2017-08-10 21:49
    1258
  • 7.3 TensorFlow笔记(基础篇):加载数据之从队列中读取

    前言整体步骤在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 ...

    2017-08-05 17:39
    599
  • 7.2 TensorFlow笔记(基础篇): 生成TFRecords文件

    前言在TensorFlow中进行模型训练时,在官网给出的三种读取方式,中最好的文件读取方式就是将利用队列进行文件读取,而且步骤有两步: 1. 把样本数据写入TFRecords二进制文件 2. ...

    2017-08-05 17:18
    657
  • 7.1 TensorFlow笔记(基础篇):加载数据之预加载数据与填充数据

    TensorFlow加载数据TensorFlow官方共给出三种加载数据的方式: 1. 预加载数据 2. 填充数据 预加载数据的缺点: 将数据直接嵌在数据流图中,当训练数据较大时,很消耗内存....

    2017-08-05 17:24
    338
  • TypeError: Can not convert a float32 into a Tensor or Operation.

    错误TypeError: Can not convert a float32 into a Tensor or Operation. # 类型错误:不能将一个浮动32转换为一个张量或操作。TypeEr...

    2017-08-09 21:03
    1490
  • Python中的argparse模块

    简介argparse是python用于解析命令行参数和选项的标准模块,用于代替已经过时的optparse模块。argparse模块的作用是用于解析命令行参数. 如果你想详细的了解它的功能.建议阅读这...

    2017-08-05 20:44
    445
  • 6.1 Tensorflow笔记(基础篇):队列与线程

    前言在Tensorflow的实际应用中,队列与线程是必不可少,主要应用于数据的加载等,不同的情况下使用不同的队列,主线程与其他线程异步进行数据的训练与读取,所以队列与线程的知识也是Tensorflow...

    2017-08-04 21:49
    662
  • 5.2 TensorFlow:模型的加载,存储,实例

    背景之前已经写过TensorFlow图与模型的加载与存储了,写的很详细,但是或闻有人没看懂,所以在附上一个关于模型加载与存储的例子,.其中模型很巧妙,比之前numpy写一大堆简单多了,这样有利于把主要...

    2017-08-12 13:06
    2402
  • 5.1 Tensorflow:图与模型的加载与存储

    前言自己学Tensorflow,现在看的书是《TensorFlow技术解析与实战》,不得不说这书前面的部分有点坑,后面的还不清楚.图与模型的加载写的不清楚,书上的代码还不能运行=- =,真是BI….咳...

    2017-08-04 12:12
    1009
  • 4.2 Tensorflow笔记:池化函数

    池化卷积神经网络的结构其中,input为输入,conv为卷积层,由卷积核构成,pool为池层,由池化函数构成最后是全连接层与输出层,其负责对卷积层提取的特征进行处理以获得我们需要的结果池化函数的意义池...

    2017-08-04 01:16
    1590
  • 4.1 Tensorflow:卷积函数

    卷积卷积神经网络的结构其中,input为输入,conv为卷积层,由卷积核构成,pool为池层,由池化函数构成最后是全连接层与输出层,其负责对卷积层提取的特征进行处理以获得我们需要的结果卷积函数卷积函数...

    2017-08-04 01:12
    1791
  • 3.1 Tensorflow: 批标准化(Batch Normalization)

    BN 简介背景批标准化(Batch Normalization )简称BN算法,是为了克服神经网络层数加深导致难以训练而诞生的一个算法。根据ICS理论,当训练集的样本数据和目标样本集分布不一致的时候,...

    2017-08-04 01:19
    1225
  • 2.1 name_scope 简单入门(一)

    name_scope 等内容主要是用来可视化的,tensoeboardimport tensorflow as tf import osos.environ['TF_CPP_MIN_LOG_LEVEL...

    2017-10-23 21:38
    368
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部