博客专栏  >  综合   >  机器学习笔记

机器学习笔记

Coursera上吴恩达的机器学习视频笔记,防止忘记,也算总结,温故知新吧

关注
2 已关注
28篇博文
  • 机器学习第十一周--照片OCR

    ML Pipeline 照片OCR ML pipeline 滑动窗 人工合成数据 创造新数据 通过已有的样本创造新的样本 上限分析ML PipelineOCR指光学字符识别,作者这里介绍照片OCR技术...

    2017-10-12 13:48
    127
  • 机器学习第十周(二)--在线学习、Map reduce

    在线学习 运输服务 搜索 Map reduce Map-reduce原理 使用Map-reduce的条件 Map-reduce处理逻辑回归在线学习在拥有连续一波数据或连续的数据流涌进来,而我们又需要一...

    2017-10-12 10:03
    42
  • 机器学习第十周(一)--随机梯度下降

    大数据 随机梯度下降 小批量梯度下降 随机梯度下降的收敛大数据机器学习中约定俗成有这么一句话:更多的数据决定算法的好坏。 但是数据变多时,计算量也就相应增多。当我们的训练集大小为一亿时,训练集就非常...

    2017-10-11 22:02
    43
  • 机器学习第九周(四)--推荐系统

    预测电影评分 基于内容的推荐 构造特征向量 参数向量theta的计算 梯度下降 协同过滤 特征向量 矛盾 协同过滤的优化 协同过滤的优化 协同过滤过程 低秩矩阵分解 协同过滤的向量化实现 找相关电影 ...

    2017-10-01 10:18
    300
  • 机器学习第九周(三)--多元高斯分布

    以一个例子引入: 把这俩个特征单独拿出来都是符合高斯分布的,现有一个绿色的异常点,我们很难从x1和x2这俩个维度下去判别是否是异常点。 因为从左图看,正常数据是分布在椭圆范围内,我们使用的异常...

    2017-09-29 22:59
    52
  • 机器学习第九周(二)--构建异常检测系统

    异常检测系统的开发与评估 异常检测 or 监督学习 如何选择特征 特征选择的建议异常检测系统的开发与评估 前面内容中,我们已经提到了使用实数评估法的重要性。这样做的想法是,当你在用某个学习算法来开发...

    2017-09-29 16:44
    106
  • 机器学习第九周(一)--异常检测

    1、异常检测问题 异常检测问题虽然主要用于非监督学习问题,但从某些角度看,又类似于一些监督学习问题。以飞机引擎的QA测试为例,我们需要采集一些飞机引擎的特征,如 x1 \ x_1\ 和  x2 \ ...

    2017-09-29 08:57
    35
  • 机器学习第八周(三)--PCA

    PCA主成分分析 PCA介绍 PCA引入 PCA 与 linear regression PCA Algorithm 预处理 PCA 具体细节 应用PCA 重构reconstruction 如何选择K...

    2017-09-15 20:02
    109
  • 机器学习第八周(二)--降维

    降维 数据压缩 Data Compression 可视化数据 Data Visualization前面我们说了无监督学习的第一个问题K-means算法,这里我们说第二个问题——降维。降维我们使用降...

    2017-09-15 16:42
    59
  • 机器学习第八周(一)--K-means

    聚类Clustering 无监督介绍和聚类引入 K-means算法 K-means规范表述 更具体的 K-means处理未分离的簇 目标优化 K-means优化函数目的 K-means的优化函数 随机...

    2017-09-14 15:38
    66
  • 机器学习第七周(三)--using SVM

    Using SVM 几种常见核函数 线性核函数 高斯核函数 多项式核函数 多分类 Logistic Regression vs SVM SVM vs NN SVM vs NNUsing SVM使用S...

    2017-09-08 22:52
    67
  • 机器学习第七周(二)--Kernels

    Kernels I 构建新特征 核的作用 高斯核表现形式 决策边界 Kernels II SVM with Kernels SVM Parameters C的变化 2的变化Kernels I构建新特征...

    2017-09-08 19:31
    57
  • 机器学习第七周(一)--SVM

    优化目标 支持向量机的引入 构建支持向量机 支持向量机的假设函数 大间距分类 安全距离因子 SVM决策边界线性分割 异常点 大间距分类的数学原理 向量内积 决策边界优化目标支持向量机的引入作者从逻辑回...

    2017-09-07 11:10
    89
  • 机器学习第六周(四)

    处理偏移数据 查准率precision和召回率recall 查准率Precision 召回率Recall 权衡精确度和召回率 高查准率低召回率情况 高召回率低查准率情况 临界值的选取 权衡不同算法的查...

    2017-09-01 22:43
    162
  • 机器学习第六周(三)

    构建垃圾分类器 错误分析Error Analysis 数值计算来评估你的机器学习算法 构建垃圾分类器判断邮件是否为垃圾邮件,从邮件中的字母来分析。 1)、给出能分辨垃圾邮件和非垃圾邮件的一些单词。 ...

    2017-09-01 10:49
    98
  • 机器学习第六周(二)

    偏差(bias)与方差(Variance)以熟悉的三个例子开始: 在上一讲中引入了测试误差和多项式次数。在这里,计算训练误差和交叉验证误差。 更详细如下: 即随着多项式次数d的不断增...

    2017-08-31 21:36
    85
  • 机器学习第六周(一)

    仍然以预测房价为例,为了提高模型表现,通常会有如下几个措施: 评估hypothesis(机器学习诊断法) 从模型得出的hypothesis可能会很好拟合当前数据,但泛化性能太差,即overfit。...

    2017-08-31 18:16
    49
  • 机器学习第五周(二)

    1、Unrolling parameters 2、Gradient checking 梯度检验是对反向传播算法求得的偏导数的一种检验。公式如下: 应用到theta矩阵: 这里作者给出一...

    2017-08-15 11:01
    233
  • 机器学习第五周(一)

    1、Cost function 神经网络进行多分类结果的输出是以向量的形式,给出Cost function 并同逻辑回归做对比。 L是神经网络的层数;SL是L层的结点数(不包括偏置结点);K代...

    2017-08-14 12:06
    73
  • 机器学习第四周(二)

    1、Examples 神经网络应用到逻辑运算上 AND theta(1)=[-30,20,20],给出g(z)的图像,并假定g(4.6)=0.99,g(-4.6)=0.01,x1、x2分别取...

    2017-08-03 11:20
    75

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部