博客专栏  >  综合   >  机器学习笔记

机器学习笔记

Coursera上吴恩达的机器学习视频笔记,防止忘记,也算总结,温故知新吧

关注
1 已关注
21篇博文
  • 机器学习第八周(三)--PCA

    PCA主成分分析 PCA介绍 PCA引入 PCA 与 linear regression PCA Algorithm 预处理 PCA 具体细节 应用PCA 重构reconstruction 如何选择K...

    2017-09-15 20:02
    65
  • 机器学习第八周(二)--降维

    降维 数据压缩 Data Compression 可视化数据 Data Visualization前面我们说了无监督学习的第一个问题K-means算法,这里我们说第二个问题——降维。降维我们使用降...

    2017-09-15 16:42
    22
  • 机器学习第八周(一)--K-means

    聚类Clustering 无监督介绍和聚类引入 K-means算法 K-means规范表述 更具体的 K-means处理未分离的簇 目标优化 K-means优化函数目的 K-means的优化函数 随机...

    2017-09-14 15:38
    21
  • 机器学习第七周(三)--using SVM

    Using SVM 几种常见核函数 线性核函数 高斯核函数 多项式核函数 多分类 Logistic Regression vs SVM SVM vs NN SVM vs NNUsing SVM使用S...

    2017-09-08 22:52
    28
  • 机器学习第七周(二)--Kernels

    Kernels I 构建新特征 核的作用 高斯核表现形式 决策边界 Kernels II SVM with Kernels SVM Parameters C的变化 2的变化Kernels I构建新特征...

    2017-09-08 19:31
    29
  • 机器学习第七周(一)--SVM

    优化目标 支持向量机的引入 构建支持向量机 支持向量机的假设函数 大间距分类 安全距离因子 SVM决策边界线性分割 异常点 大间距分类的数学原理 向量内积 决策边界优化目标支持向量机的引入作者从逻辑回...

    2017-09-07 11:10
    33
  • 机器学习第六周(四)

    处理偏移数据 查准率precision和召回率recall 查准率Precision 召回率Recall 权衡精确度和召回率 高查准率低召回率情况 高召回率低查准率情况 临界值的选取 权衡不同算法的查...

    2017-09-01 22:43
    83
  • 机器学习第六周(三)

    构建垃圾分类器 错误分析Error Analysis 数值计算来评估你的机器学习算法 构建垃圾分类器判断邮件是否为垃圾邮件,从邮件中的字母来分析。 1)、给出能分辨垃圾邮件和非垃圾邮件的一些单词。 ...

    2017-09-01 10:49
    45
  • 机器学习第六周(二)

    偏差(bias)与方差(Variance)以熟悉的三个例子开始: 在上一讲中引入了测试误差和多项式次数。在这里,计算训练误差和交叉验证误差。 更详细如下: 即随着多项式次数d的不断增...

    2017-08-31 21:36
    37
  • 机器学习第六周(一)

    仍然以预测房价为例,为了提高模型表现,通常会有如下几个措施: 评估hypothesis(机器学习诊断法) 从模型得出的hypothesis可能会很好拟合当前数据,但泛化性能太差,即overfit。...

    2017-08-31 18:16
    30
  • 机器学习第五周(二)

    1、Unrolling parameters 2、Gradient checking 梯度检验是对反向传播算法求得的偏导数的一种检验。公式如下: 应用到theta矩阵: 这里作者给出一...

    2017-08-15 11:01
    178
  • 机器学习第五周(一)

    1、Cost function 神经网络进行多分类结果的输出是以向量的形式,给出Cost function 并同逻辑回归做对比。 L是神经网络的层数;SL是L层的结点数(不包括偏置结点);K代...

    2017-08-14 12:06
    55
  • 机器学习第四周(二)

    1、Examples 神经网络应用到逻辑运算上 AND theta(1)=[-30,20,20],给出g(z)的图像,并假定g(4.6)=0.99,g(-4.6)=0.01,x1、x2分别取...

    2017-08-03 11:20
    50
  • 机器学习第四周(一)

    1、Non-linear hypotheses,引入课程中的一幅图片 对于图中的数据,只有俩个feature,分类效果尚能令人满意,但当feature数量不断增大时,假设函数中二次项数会剧增,比...

    2017-08-02 17:08
    61
  • Fminunc函数和Optimset函数

    costFunction函数是自定义函数;输入是theta,输出是jVal和gradient,其中jVal是对照左边求损失函数的,gradient是对照左边求损失函数的偏导。Optimset函数:‘G...

    2017-08-03 12:02
    58
  • 机器学习第三周(三)

    1、过拟合问题(overfitting) 第一幅图片能看到模型能大致拟合数据,但效果不是很好;第二幅相比效果就好很多;第三幅图片也能很好的拟合当前数据,但是预测数据效果不行。我们将第一幅图片中的现象...

    2017-08-02 21:44
    52
  • 机器学习第三周(二)

    损失函数:逻辑回归如果使用和线性回归相同的损失函数,那得到的损失函数图像如下: 由函数图像看出,这是一个非凸函数(凸函数最重要的特征是局部最优解同时也是全局最优解),并不适用于做逻辑回归的损失函...

    2017-08-01 11:19
    56
  • 机器学习第三周(一)

    逻辑回归的引入:监督学习中我们遇到的不仅有回归问题,还有分类问题,对于回归问题常用线性回归做假设预测,那对于分类问题是否也能采用线性回归呢?如下例 图中8个数据,根据肿瘤大小来判断肿瘤是良性还是...

    2017-07-30 12:09
    59
  • 机器学习第二周--Multiple features & Normal equation

    第一周内容针对单变量,也就是一个feature。这此考虑多变量,即多个features。 仍然与预测房价为例,影响房价的因素不只有面积,我们加入卧室数量、楼层、房龄,这些可看作新加入的feature...

    2017-07-29 14:02
    68
  • 机器学习第一周(二)--模型引入

    假设函数Hypothesis 损失函数Cost function 梯度下降 学习速率 梯度下降应用到线性回归 梯度下降表达式 涉及到的计算回顾监督学习的流程 假设函数–Hypothesis以预测房价...

    2017-07-27 13:27
    95

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部