博客专栏  >  编程语言   >  机器学习的sklearn实现

机器学习的sklearn实现

本专栏主要介绍机器学习中常见的算法,以Ng的机器学习教程、李航的《统计学习方法》和华校专的《Python大战机器学习》等为主要参考资料,从理论到应用,逐步掌握机器学习。

关注
2 已关注
14篇博文
  • 机器学习教程之13-决策树(decision tree)的sklearn实现

    0.概述决策树(decision tree)是一种基本的分类与回归方法。 主要优点:模型具有可读性,分类速度快。 决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。1.决策树模型与...

    2017-08-02 20:38
    779
  • 机器学习教程之12-朴素贝叶斯(naive Bayes)法的sklearn实现

    0.概述朴素贝叶斯法基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最...

    2017-07-23 20:12
    388
  • 机器学习教程之11-降维(Dimensionality Reduction)

    0.概述 ---- **降维**也是一种**无监督学习**问题。

    2017-08-05 13:52
    216
  • 机器学习教程之10-聚类(Clustering)-K均值聚类(K-means)的sklearn实现

    0.概述 ---- **优点**: 原理简单 速度快 能够处理大量的数据 **缺点**: 需要指定聚类 数量K 对异常值敏感 对初始值敏感

    2017-08-04 18:48
    2340
  • 机器学习教程之9-SVM的sklearn实现

    0.概述[1] 优点:缺点:支持向量机(support vector machines,SVM)是一种二类分类模型。SVM的基本模型是定义在特征空间的间隔最大的线性分类器,间隔最大使它有别于感知器。...

    2017-07-27 14:39
    573
  • 机器学习教程之8-机器学习系统的设计(Machine Learning System Design)

    0.概述 --- 当数据有**类偏斜**的现象时,**查准率**和**查全率**能更准确的判断算法效果的好坏。

    2017-08-16 22:43
    150
  • 机器学习教程之7-应用机器学习的建议(Advice for Applying Machine Learning)

    0.概述1.决定下一步做什么关于机器学习,可以做两件事情,开发一个机器学习系统或者改进一个机器学习系统的性能。当发现训练好的模型预测数据时有较大误差,可以尝试如下几个角度以减少误差: (1)获取更多...

    2017-06-03 20:55
    272
  • 机器学习教程之6-神经网络的学习(Neural Networks:Learning)

    1.代价函数 注意:由红色圆圈可知,这里的代价函数实际上输出的各个元素的代价函数之和。2.反向传播算法首先用正向传播方法计算出每一层的激活单元,利用训练集的结果与神经网络预测的结果求出最后一层的误差...

    2017-05-23 09:48
    201
  • 机器学习教程之5-神经网络:表述(Neural Networks:Representation)

    1.非线性假设无论是线性回归还是逻辑回归都有这样一个缺点,即: 当特征太多时,计算的负荷会非常大。使用非线性的多项式,能够建立更好的分类模型。普通的逻辑回归模型,不能有效地处理很多的特征,这时候就需要...

    2017-05-07 10:52
    435
  • 机器学习教程之4-正则化(Regularization)

    1.过拟合的问题模型的分类:欠拟合、完全符合、过拟合 目前已经学习的线性回归和逻辑回归可以解决很多问题,在实际应用中可能会产生过度拟合(over-fitting)的问题,可能导致它们的效果很差。 ...

    2017-05-23 20:47
    435
  • 机器学习教程之3-逻辑回归(logistic regression)的sklearn实现

    0.概述 --- **线性回归**不仅可以做**回归**问题的处理,也可以通过与**阈值**的比较转化为**分类**的处理,但是其**假设函数**的输出范围没有限制,这样很大的输出被分类为1,较少的数...

    2017-04-29 23:30
    585
  • 机器学习教程之2-k近邻模型的sklearn实现

    0.概述1)k近邻法通过少数服从多数的原则进行预测; 2)k近邻法不具有显式的学习过程; 3)k紧邻法的三个基本要素:k值得选择、距离度量和分类决策规则。优点: 简单好用,容易理解,精度高,理论...

    2017-07-21 13:35
    217
  • 机器学习教程之1-感知器(Perceptron)的sklearn实现

    0.概述优点: 简单且易于实现缺点:1.感知器模型如果数据是线性可分的,并且是二分类的,则可以以下函数模型表示输入到输出的关系:2.感知器学习策略将所有误分点到超平面距离之和表示为代价函数:不考虑 ...

    2017-07-10 14:25
    451
  • 机器学习之0-机器学习概述

    1.背景 ---- **意义**:机器学习是目前信息技术中最激动人心的方向之一。 **应用场景**:搜索、图片分类、过滤垃圾邮件。 **应用领域**:计算生物学、机械应用、手写识别、自然语言处理...

    2017-05-07 18:39
    169
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部