博客专栏  >  移动开发   >  写程序学ML之《机器学习实战》

写程序学ML之《机器学习实战》

《机器学习实战》是初学者的最佳读品之一。为了进入机器学习领域,笔者希望通过深入研究这本精品,打开机器学习的大门。本着“Just Do It”的精神,笔者使用python语言,实现了书中每一个程序,并且加入了详细的注释。以此,加深笔者对ML的理解,也希望能为其他初学者提供点滴帮助。

关注
2 已关注
9篇博文
  • 写程序学ML:朴素贝叶斯算法原理及实现(三)

    对于分类而言,使用概率有时要比使用硬规则更为有效。贝叶斯概率及贝叶斯准则提供了一种利用已知值来估计未知概率的有效方法。

    2017-10-01 21:39
    97
  • 写程序学ML:朴素贝叶斯算法原理及实现(二)

    按照朴素贝叶斯算法的原理,我们需要实现一个朴素贝叶斯分类器。首先,需要使用文本样例对贝叶斯分类器进行训练。

    2017-10-01 21:31
    80
  • 写程序学ML:朴素贝叶斯算法原理及实现(一)

    朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。 和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳...

    2017-10-01 21:26
    44
  • 写程序学ML:决策树算法原理及实现(四)

    决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树...

    2017-09-24 19:23
    66
  • 写程序学ML:决策树算法原理及实现(三)

    决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树...

    2017-09-24 19:16
    50
  • 写程序学ML:决策树算法原理及实现(二)

    决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树...

    2017-09-24 19:03
    54
  • 写程序学ML:决策树算法原理及实现(一)

    决策树的工作原理是根据用户输入的一系列数据,给出最后的分类答案。 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。K近邻算法的最大缺点是无法给出数据的内在含义,决策树...

    2017-09-24 17:52
    46
  • 写程序学ML:K近邻(KNN)算法原理及实现(二)

    K近邻算法是分类数据最简单最有效的算法,这里通过三个例子讲述了如何使用K近邻算法构造分类器。K近邻算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。K近邻算法必须保存全部数据集,如...

    2017-09-14 08:02
    88
  • 写程序学ML:K近邻(KNN)算法原理及实现(一)

    K近邻(k-NearestNeighbor,KNN)算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

    2017-09-13 07:38
    134
img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部