博客专栏  >  综合   >  基于深度学习的图像分类

基于深度学习的图像分类

本专栏依托斯坦福CS231n课程,建立关于CS231n课程学习以及图像分类的一系列博文,目标在于正确使用深度学习技术,在图像分类领域取得较为不错的结果。

关注
2 已关注
11篇博文
  • 绪论:从第一次图像分类比赛开始~

    从一次医学图像分类比赛,引出关于基于深度学习的图像分类专题。

    2017-10-11 21:19
    317
  • 图像分类基本流程及 KNN 分类器

    本文首先介绍了图像分类的相关概念,如图像分类的挑战,流程等;之后以KNN算法为例,介绍了基于验证集和交叉验证方法,选取超参数的方法;最后总结用KNN进行分类的情况,并由此引出对于图像分类,仅仅采用像素...

    2017-10-21 16:30
    473
  • 图像的线性分类器(感知机、SVM、Softmax)

    本文主要介绍图像的线性分类器。首先介绍感知机,并由感知机引出评价函数与代价函数两个概念;比较了SVM 与 Softmax 两类分类器的区别。

    2017-10-22 16:32
    146
  • 最优化基础:损失函数可视化、折页损失函数 & 梯度计算

    本文主要介绍了神经网络或者机器学习中最优化部分最基础的相关概念。首先以低维数据为例,将低维数据的损失函数可视化,给出对于待优化问题的直观印象,并证明了SVM损失函数的分段线性化;接下来讨论了随机搜索、...

    2017-10-22 23:02
    168
  • 反向传播笔记

    1. 简单表达式和理解梯度   函数变量在某个点周围的极小区域内变化,而导数就是变量变化导致的函数在该方向上的变化率。要注意的是,在这里已经指出了是在“极小区域”内,所以函数在以某一点的数值只能用来...

    前天 21:12
    7
  • 神经网络笔记1

    1. 快速简介   非线性函数在神经网络的计算上是至关重要的,如果略去这一步,那么两个矩阵将会合二为一,对于分类的评分计算将重新变成关于输入的线性函数。 2. 作为线性分类器的单个神经元  ...

    前天 23:16
    6
  • 神经网络笔记2

    CS231n神经网络笔记2

    昨天 17:04
    7
  • 神经网络笔记3

    在《神经网络笔记2》中,我们讨论了神经网络的静态部分:如何创建网络的连接、数据和损失函数。本节将致力于讲解神经网络的动态部分,即神经网络学习参数和搜索最优超参数的过程。

    昨天 21:44
    7
  • 卷积神经网络入门详解

    本文主要介绍了关于卷积神经网络入门所必备的绝大部分知识。首先对神经网络的结构进行概述,之后分别介绍了卷积层,汇聚层(池化层),归一化层,全连接层,重点讨论了将全连接成转化为卷积层及如何处理输出图像尺寸...

    2017-11-08 15:52
    630
  • 半监督学习

    半监督学习笔记

    昨天 16:28
    12
  • 面向小数据集构建图像分类模型

    本文为keras中文文档中《面向小数据集构建图像分类模型》的学习笔记.

    2017-12-16 12:33
    142

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部