博客专栏  >  架构   >  Deep Learning读书笔记

Deep Learning读书笔记

Deep Learning An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville 记录下本人阅读该书的心得与体会,抛砖引玉,希望各位不吝赐教

关注
1 已关注
8篇博文
  • Deep Learning读书笔记1--基础知识篇(第二、三、四、五章)

    Deep Learning An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville 英文原版 感谢大神在Gi...

    2017-08-16 11:33
    1014
  • Deep Learning读书笔记2---深度前馈网络

    1.基本概念隐藏层: 神经网络中输入与输出层之间的中间层,训练数据并没有给出这些层中的每一层所需的输出,所以叫隐藏层。模型的宽度: 网络中的每个隐藏层通常都是向量值的。这些隐藏层的...

    2017-09-07 10:51
    211
  • Deep Learning读书笔记3---深度学习中的正则化

    1.概念正则化定义为“对学习算法的修改——旨在减少泛化误差而不是训练误差”。 目前有许多正则化策略。 有些策略向机器学习模型添加限制参数值的额外约束。 有些策略向目标函数增加额外项来对参数值进行软...

    2017-09-15 09:28
    433
  • Deep Learning读书笔记4---深度模型中的优化

    1. 最小化经验风险利用训练集上的经验分布,p^(x,y)\hat{p}(x,y)替代真实分布p(x,y)p(x,y)。 现在,我们将最小化经验风险: 其中mm表示训练样本的数目。2.小批量算...

    2017-09-21 11:38
    316
  • Deep Learning读书笔记5---卷积网络

    1. 卷积公式: 2.卷积运算特点:稀疏交互: **参数共享:**参数共享是指在一个模型的多个函数中使用相同的参数。 在卷积神经网络中,核的每一个元素都作用在输入的每一位置上(是否考虑边界像素取决于对...

    2017-09-27 10:58
    122
  • Deep Learning读书笔记6---序列建模:循环和递归网络

    1. 展开计算图循环神经网络使用下面的公式定义隐藏单元的值。 为了表明状态是网络的隐藏单元,我们使用变量hh代表状态重写:上式可以用两种不同的方式绘制。 一种方法是为可能在模型的物理实现中存在的部分赋...

    2017-10-11 14:15
    137
  • Deep Learning读书笔记7--实践方法论

    1. 性能度量精度是模型报告的检测是正确的比率,而召回率则是真实事件被检测到的比率。 检测器永远报告没有患者,会得到一个完美的精度,但召回率为零。 而报告每个人都是患者的检测器会得到一个完美的召回率,...

    2017-10-13 10:54
    49
  • Deep Learning读书笔记8--应用

    1. 大规模深度学习深度学习的基本思想基于联结主义:尽管机器学习模型中单个生物性的神经元或者说是单个特征不是智能的,但是大量的神经元或者特征作用在一起往往能够表现出智能。 在训练过程中,数据并行某种程...

    2017-10-17 11:40
    36

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部