博客专栏  >  综合   >  数据科学与人工智能(软件联盟教材集合)

数据科学与人工智能(软件联盟教材集合)

山科大软件联盟负责人之一的我,为学弟学妹带课时的学习资料综合,包括代码,演讲的内容,目前只收录17级学弟学妹的内容,第一期,第一部分为:机器学习基础,第二部分为:网络爬虫;第二期:深度学习基础.内容与其他专栏有重复

关注
7 已关注
43篇博文
  • BeautifulSoup([your markup]) to this: BeautifulSoup([your markup], "lxml") 解决未设置默认解析器的错误

    在看时,敲了一些代码,其中报了一个错误为 BeautifulSoup([your markup]) to this: BeautifulSoup([your markup], “lxml”)`...

    2017-04-22 13:19
    1536
  • urllib2.HTTPError: HTTP Error 403: Forbidden的解决方案

    在使用python爬取网络爬虫时,经常会以为目标网站因为禁止爬取网络爬虫而出现403 Forbidden的错误问:为什么会出现403 Forbidden的错误 答:出现urllib2.HTTPErr...

    2017-04-22 13:43
    1954
  • Python2 Python3 爬取赶集网租房信息,带源码分析

    *之前偶然看了某个腾讯公开课的视频,写的爬取赶集网的租房信息,这几天突然想起来,于是自己分析了一下赶集网的信息,然后自己写了一遍,写完又用用Python3重写了一遍.之中也遇见了少许的坑.记一下.算是...

    2017-04-23 23:18
    2319
  • 数据集划分问题

    留出法(hold-out) 使用 n:m and n + m =1 的形式对原数据进行分割,例如 train : test = 7 : 3 or train : test = 6.5 : 3.5 但...

    2018-01-31 17:07
    114
  • Sklearn中的CV与KFold详解

    关于交叉验证,我在之前的文章中已经进行了简单的介绍,而现在我们则通过几个更加详尽的例子.详细的介绍 CV %matplotlib inline import numpy as np from sk...

    2018-01-31 17:35
    70
  • auto-sklearn手册

    手册本手册从几个方面说明了如何使用auto-sklearn。并且 尽可能引用的例子来解释某些配置。官网首页.官网中文翻译例子auto-sklearn 下面的例子演示几个 方面的用法,他们都位于gith...

    2017-12-12 19:44
    458
  • Hyperopt中文文档:Home

    主页Font Tian translated this article on 22 December 2017Hyperopt:分布式异步算法组态/超参数优化(主页,但这不是维基的主页)。加入hype...

    2017-12-23 18:16
    327
  • hyperopt中文文档:Installation-Notes安装说明

    安装说明hyperopt安装说明 Font Tian translated this article on 23 December 2017有关MongoDB的部分Hyperopt要求mongodb...

    2017-12-23 18:19
    378
  • 集成算法中的Bagging

    Bagging meta-estimator 基本描述 在集成算法中,bagging 方法会在原始训练集的随机子集上构建一类黑盒估计器的多个实例,然后把这些估计器的预测结果结合起来形成最终的预...

    2018-01-16 14:16
    85
  • auto-sklearn简介

    auto-sklearn是什么?auto-sklearn是一个自动化机器学习的工具包,其基于sklearn编写. >>> import autosklearn.classification ...

    2017-12-12 19:47
    481
  • Hyperopt中文文档:FMin

    FMinFont Tian translated this article on 22 December 2017这一页是关于 hyperopt.fmin() 的基础教程. 主要写了如何写一个可以利...

    2017-12-23 18:18
    487
  • hyperopt中文文档:Scipy2013

    Scipy2013Font Tian translated this article on 23 December 2017SciPy2013摘要提交标题Hyperopt:用于优化机器学习算法的超参数...

    2017-12-23 18:25
    395
  • RandomForest:随机森林

    随机森林:RF 随机森林是一种一决策树为基学习器的Bagging算法,但是不同之处在于RF决策树的训练过程中还加入了随机属性选择(特征上的子采样) 传统的决策树在选择划分的属性时,会选择最优属性...

    2018-01-16 14:07
    142
  • AdaBoost算法特性

    Boosting算法提升算法是一种常见的统计学习方法,其作用为将弱的学习算法提升为强学习算法.其理论基础为:强可学习器与弱可学习器是等价的.即在在学习中发现了’弱学习算法’,则可以通过某些方法将它特生...

    2017-12-18 16:55
    445
  • 朴素贝叶斯分类器(Navie Bayesian Classifier)中的几个要点(一)

    关键字: 拉普拉斯修正(Laplacian correction) 懒惰学习(lazy leanring) 对数似然(log-likelihood) 拉普拉斯修正(Laplacian correcti...

    2017-05-18 13:20
    1719
  • 数据标准化的方法与意义

    含义数据标准化和归一化存在区别 数据归一化是数据标准化的一种典型做法,即将数据统一映射到[0,1]区间上. 数据的标准化是指将数据按照比例缩放,使之落入一个特定的区间.意义 求解需要 比如在SV...

    2017-07-01 16:28
    3559
  • 机器学习实战-数据探索(变量变换、生成)

    《机器学习实战-数据探索(1、变量识别;2、单变量分析;3、双变量分析)》机器学习实战-数据探索(缺失值处理)机器学习实战-数据探索(异常值处理) 上面三篇文章介绍了数据探索的前五步,机器学习更多内容...

    2017-10-09 20:46
    358
  • 递归式特征消除:Recursive feature elimination

    简述 特征的选取方式一共有三种,在sklearn实现了的包裹式(wrapper)特诊选取只有两个递归式特征消除的方法,如下: recursive feature elimination ( RF...

    2018-01-08 16:57
    251
  • Feature selection using SelectFromModel

    SelectFromModel sklearn在Feature selection模块中内置了一个SelectFromModel,该模型可以通过Model本身给出的指标对特征进行选择,其作用与其名字...

    2018-01-15 15:17
    127
  • 方差过滤: Removing features with low variance

    方差特征选择的原理与使用 VarianceThreshold 是特征选择的一个简单基本方法,其原理在于–底方差的特征的预测效果往往不好。而VarianceThreshold会移除所有那些方差不满足一...

    2018-01-07 20:54
    101
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部