博客专栏  >  综合   >  《SLAM 14讲》个人提炼笔记

《SLAM 14讲》个人提炼笔记

本专栏为来源于《SLAM 14讲》,为个人提炼笔记

关注
0 已关注
21篇博文
  • SLAM学习——李群与李代数

    1.李群与李代数基础三维旋转矩阵构成特殊正交群SO(3),而变换矩阵构成了特殊欧氏群SE(3):其中特殊正交群SO(3)和特殊欧氏群SE(3),对加法不封闭,而对乘法封闭。则有:群,是一种集合加上一种...

    2017-07-09 20:12
    674
  • SLAM学习——相机与图像

    1.针孔模型一般而言,我们通过小孔成像来描述相机的成像原理,对其进行数学建模,如下图所示。其中O-x-y-z为相机坐标系,O’-x’-y’-z’为成像平面物理坐标系,o-u-v为像素坐标系,通过此几何...

    2017-07-10 16:05
    259
  • SLAM学习——非线性优化

    1.状态估计问题对于SLAM经典模型,我们知道是由一个运动方程和一个观测方程构成,如下方程:其中为相机的位姿,u 为输入数据,即为采集到的数据。假如我们在处观测到路标,对应到图像上的像素位置 ,那么我...

    2017-07-10 23:07
    432
  • Ceres库和g2o库的使用

    1.Ceres库Ceres库向通用的最小二乘问题的求解,定义优化问题,设置一些选项,可通过Ceres求解。 Ceres求解的最小二乘问题最一般形式为:在Ceres问题中,我们将定义优化变量 x 和每个...

    2017-07-11 16:09
    396
  • 视觉里程计(一)

    1.特征点法视觉SLAM主要分为视觉前端和优化后端。前端也称为视觉里程计(VO),根据相邻图像的信息估计处粗略的相机运动,给够后端提供较好的初始值。 VO的实现方法,按是否需要提取特征,可分为特征点的...

    2017-07-12 00:58
    1013
  • 视觉里程计(二)

    1.3D-2D:PnPPnP(Perspective-n-Point)是一种求解3D到2D点对运动的方法。描述了当知道n个3D空间点及其投影位置时,如何估计相机的位姿。 对象:双目或RGB-D视觉里...

    2017-07-12 22:57
    286
  • 视觉里程计(三)

    1.特征点法分析及改进特征法在视觉里程计中虽占主流,但是依旧有其缺点: 1.关键点的提取与描述子的计算非常耗时。 2.使用特征点时,忽略了出特征以外的所有信息。一副图像有几十万个像素,而特征点只有...

    2017-07-14 22:04
    236
  • 视觉里程计(四)

    1.直接法如下图为空间点P在第一帧和第二帧的映射,而R,t()则为第一帧到第二帧的转换矩阵。在直接法中,不通过特征法,而是通过相机的位姿(在直接法中是已知的)来估计第二个相机中的像素位置。直接法:当相...

    2017-07-15 21:52
    182
  • 设计前端(一)

    1.搭建VO框架A. SLAM库是一个小型库,库的组织结构如下:1.bin 用来存放可执行的二进制文件。 2.include/myslam存放SLAM模块的头文件,主要是.h文件,当把包含目录设到i...

    2017-07-17 19:33
    150
  • 设计前端(二)

    1.特征提取和匹配前面我们所说的,仅凭俩帧的估计是不够的。我们会将特征点缓存成一个小地图,计算当前帧和地图之间的位置关系。忽略掉很多关键点,只关心当前帧与上一时刻帧(即参考帧),即我们只考虑如下图所示...

    2017-07-17 23:29
    85
  • SLAM学习——后端(一)

    1.概述对于里程计而言,只有短暂的记忆。而在后端优化中,我们更加考虑一段更长时间内(或所有时间内)的状态估计问题。 与之前略有不同,我们令 为k时刻的所有未知量,包含了当前位姿与m个路标点,则写成...

    2017-07-22 13:54
    209
  • SLAM学习——后端(二)

    1.投影模型和BA代价模型对于观测模型而言,我们可以简单的用以下的模型进行表示:z=h(x,y)上图中,P点是世界坐标系的点,中间的畸变模块满足:把观测返程抽象出来,有:z=h(x,y) ,这里的x指...

    2017-07-27 01:10
    233
  • SLAM学习——回环检测

    1.回环检测回环检测的关键,就是如何有效的检测出相机经过同一个地方这件事。它关系到我们估计的轨迹和地图在长时间下的正确性。由于回环检测提供了当前数据与所有历史数据的关联,在跟踪算法丢失后,我们还可以利...

    2017-07-28 00:40
    722
  • SLAM学习——建图问题(一)

    1.单目稠密地图的构建在上述中,我们讨论的是稀疏地图的构建,但是在实际的定位、导航和壁障过程中,我们需要有稠密地图。常见的单目稠密地图的构建思路有: 1.单目:通过运动,得出运动轨迹,计算出运动的关...

    2017-08-03 10:30
    299
  • SLAM学习——建图(二)

    1.对单目构建稠密地图的讨论像素梯度的问题在前面中,通过块匹配来获得匹配结果。块匹配的正确与否,依赖于图像块是否具有区分度,有明显梯度的小块将具有良好的区分度。对于梯度不明显的像素,将比较难估计其有效...

    2017-08-05 16:51
    288
  • CMake

    1.cmake就是linux下的C++管理工具,简单的代码你可以用g++一条条敲,再多些可以用Makefile来管理,cmake就是自动生成makefile的工具,比makefile集成度更高一些2....

    2017-08-07 16:38
    105
  • RGB-D SLAM——匹配篇(一)

    之前跑过高博的一起做RGB-D SLAM,趁着放假,也稍微整理一下,顺便理一下思路, 由于本人是在Ubuntu上跑的代码,所以用的工具和IDE是CMake+QtCreator,先稍微介绍下如果用QtC...

    2017-09-17 19:15
    136
  • RGB-D SLAM——点云拼接篇(二)

    1.OpenCv旋转向量平移向量转换为Eigen变换矩阵在上一节中我们已经知道如何求出俩张图片的旋转向量和平移向量,那么接下来我们需要将旋转向量和平移向量转换成平移矩阵,可以使用Eigen工具来实现:...

    2017-09-19 23:46
    124
  • SLAM——图优化篇

    1.图优化的入门在上节中,直接用俩俩匹配搭建一个里程计,但是如果:1.错误匹配,整个图就会看起来很奇怪,就是错了。2.误差会累积,常见的现象是:相机转过去的过程能作对,但转回来就很奇怪。3.效率低。由...

    2017-09-20 22:25
    267
  • RGB-D SLAM——g2o篇(三)

    一.g2o的使用在该部分中,我们调用g2o程序优化一个球,就是在论文中经常看到的那个例子,论文名字为《g2o:a general framework for(hyper) graph optimiza...

    2017-09-24 22:59
    150

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部