博客专栏  >  云计算/大数据   >  深度学习

深度学习

深度学习必备的知识点详细讲解,对经典网络模型结构详细分析讲解,是深度学习入门和学习的专栏!

关注
4 已关注
16篇博文
  • 深度学习:综述

    深度学习相比于传统方法的优势随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高。其实这是一个特征表达力的问题,传统方法特征表达力,不如Deep Learning的...

    2017-04-22 20:56
    81
  • 深度学习:感知机perceptron

    感知机是二分类的线性分类模型,输入是特征向量,输出是类别,取值+1,-1。感知机学习旨在求出将训练数据进行线性划分的分离超平面wx + b = 0,其中w是超平面的法向量,b是超平面的截距。感知机模型...

    2017-04-22 20:58
    51
  • 深度学习:前馈神经网络neural network

    前馈神经网络:FFNN模型(feedforward neural network)固定基函数的线性组合构成的回归模型和分类模型。我们看到,这些模型具有一些有用的分析性质和计算性质,但是它们的实际应用被...

    2017-04-28 16:50
    99
  • 深度学习:神经网络中的激活函数

    激活函数神经网络神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function。  为什么要用激活函数神经网络中激活函数的主要作用是...

    2017-05-04 00:43
    114
  • 深度学习:径向基网络(RBF)

    如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。RBF网络能够逼近任意的非线性函数,可以处...

    2017-05-13 19:22
    69
  • 深度学习:梯度消失和梯度爆炸

    梯度消失主要是因为网络层数太多,太深,导致梯度无法传播。本质应该是激活函数的饱和性。[神经网络中的激活函数 ]DNN结果出现nan值?梯度爆炸,导致结果不收敛。都是梯度太大惹的祸,所以可...

    2017-05-13 19:32
    124
  • 深度学习:神经网络正则化(防止过拟合方法)

    训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择。Dropout是hintion最近2年提出的,源于其文章Improving neural netw...

    2017-07-18 15:54
    102
  • 深度学习:Embedding

    One-hot Embedding假设一共有个物体,每个物体有自己唯一的id,那么从物体的集合到有一个trivial的嵌入,就是把它映射到中的标准基,这种嵌入叫做One-hot embedding/e...

    2017-07-26 11:08
    2323
  • 深度学习:词嵌入word2vec

    word2vec简介          深度学习在自然语言处理中第一个应用:训练词嵌入。通过词嵌入的词表示方式,大量的nlp领域的任务都得到了提升。此外,几乎所有的深度学习在自然语言处理中的应用都使用...

    2017-07-26 15:24
    137
  • 深度学习:卷积神经网络CNN

    Convolutional Neural Networks卷积神经网络       卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神...

    2017-08-02 10:09
    129
  • 深度学习:卷积神经网络CNN变体

    带步幅的多通道巻积很多时候,我们输入的是多通道图像。如RGB三通道图像,下图就是。也有可能我们出于特定目的,将几张图组成一组一次性输入处理。多通道巻积假定我们有一个 4 维的核张量 K,它的每一个元素...

    2017-08-02 11:31
    104
  • 深度学习:循环神经网络RNN

    http://blog.csdn.net/pipisorry/article/details/77776743RNN模型循环神经网络(recurrent neural network,RNN)是一种具...

    2017-09-01 19:49
    123
  • 深度学习:循环神经网络RNN的变体

    双向RNN:BRNN模型(Bidirectional RNN)BRNN不仅接受上一个时刻的隐层输出作为输入,也有接受下一个时刻的隐层输出作为输入;Structure of a bidirectiona...

    2017-10-16 09:09
    91
  • 深度学习:Seq2seq模型

    Encoder-Decoder模型和Attention模型。seq2seq是什么?简单的说,就是根据一个输入序列x,来生成另一个输出序列y。seq2seq有很多的应用,例如翻译,文档摘取,问答系统等等...

    2017-10-17 11:04
    149
  • 深度学习:长短期记忆模型LSTM

    lstm可以减少梯度消失:[RNN vs LSTM: Vanishing Gradients]LSTM模型(long-short term memmory)长短期记忆模型(long-short ter...

    2017-10-27 10:14
    142
  • 深度学习:自然语言生成-集束搜索beam search和随机搜索random search

    在sequence2sequence模型中,beam search的方法只用在测试的情况,因为在训练过程中,每一个decoder的输出是有正确答案的,也就不需要beam search去加大输出的准确率...

    2017-10-31 16:31
    9563

概率图模型
21132557
PythonQT
544599
Django
1388069
Git
850858
主题模型
16128401
机器学习
1861522
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部