博客专栏  >  综合   >  高等数学

高等数学

集合大学高等数学基础知识

关注
0 已关注
24篇博文
  • L' Hospital(洛必达)法则

    如果当x→a(或x→∞)x \to a (或x \to \infty)时,两个函数f(x)与F()f(x) 与F()都趋于0或∞0 或 \infty,那么极限limx→a(x→∞)f(x)F(x)\l...

    2018-01-15 17:15
    8
  • 定积分在几何学上的应用

    一、面积 1、直角坐标系情形 直角坐标系中的平面图形常常可以分为无数个微型矩形来求 例如: 将这无数个微型矩形的面积求出来再相加即可求得平面图形的面积。 由图和矩形面积计算公式A=l×b...

    5天前 15:30
    10
  • 曲线的凹凸性与拐点

    一个函数在上升或下降的过程中,常常会有一个弯曲方向的问题,例如:虽然同为上升函数,但弯曲方向的不同使它们看起来有显著的区别 下面给出曲线凹凸性的定义: 设f(x)f(x)在区间II上连续,如果...

    2018-01-13 11:30
    27
  • 反函数的求导法则

    如果函数x=f(y)x = f(y)在区间IyI_y内单调、可导且f′(y)≠0f'(y) \neq 0,那么它的反函数y=f−1(x)y = f^{-1}(x)在区间Ix={x|x=f(y),y∈I...

    2018-01-13 16:52
    20
  • 由参数方程所确定的函数的导数

    一般地,f(n)={x=φ(t)y=ϕ(t)f(n) = \begin{cases} x = \varphi(t) \\ y = \phi(t) \end{cases} 确定yy与xx间的函数关系,...

    2018-01-13 17:37
    8
  • 高阶导数

    在函数y=f(x)y = f(x)中,我们称yy对xx的一阶导数为y′(或者表达为dydx、ddxy)y' (或者表达为\frac{dy}{dx}、\frac{d}{dx}y)同理,xx对yy的一阶导...

    2018-01-12 22:14
    8
  • 切线方程和法线方程

    函数y=f(x)y = f(x)在点x0x_0处的导数f′(x0)f'(x_0)在几何上表示曲线y=f(x)y = f(x)在点M(x0,f(x0))M(x_0, f(x_0))处的切线的斜率,即f′...

    2018-01-12 23:36
    13
  • 函数的单调性与极值点

    一、单调性的判定法 如果函数y=f(x)y = f(x)在[a,b][a, b]上单调增加(单调减少),那么它的图形是一条沿xx轴正在上升(下降)的曲线.可知,这时曲线上各点的切线斜率是非负的(非正...

    2018-01-13 10:34
    17
  • 常数和基本初等函数导数公式推导

    2017-11-01 13:27
    171
  • 函数的间断点

    设f(x)f(x)在点x0x _0的某去心邻域中有定义,在这个前提下,如果f(x)f(x)有一下三种情形之一: 1、在x=x0x = x _0处没有定义; 2、虽在x=x0x = x_0处有定义,...

    2017-11-17 13:22
    126
  • 显函数和隐函数

    显函数: 等号左边是因变量,右边是带有自变量的式子,当自变量取定义域内取任一值时,由这式子能确定对应的函数值,这样的函数叫做显函数。 例如:y=sinxy = \sin x、y=lnx+1−x2−...

    2017-11-25 13:04
    132
  • 罗尔(Rolle)、拉格朗日(Lagrange)和柯西(Cauchy)三大微分中值定理的定义

    一、Rolle中值定理 定义: 若函数f(x)f(x)满足{f(x)在[a,b]内连续,在(a,b)内可导f(a)=f(b) \begin{cases} f(x)在[a, b]内连续,在(a,...

    2017-11-25 15:23
    97
  • 积化和差、和差化积公式

    和差化积公式: sinx+siny=2sinx+y2cosx−y2\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} sinx−siny=2...

    2017-12-02 14:17
    106
  • 基本积分表

    24个基本积分: ①$$

    2017-12-02 18:26
    162
  • 凑微分公式

    1、 ①xdx=12dx2xdx = \frac{1}{2}dx^2 ②xndx=1n+1dxn+1x^ndx = \frac{1}{n+1}dx^{n + 1} ③1x√dx=2dx√\fra...

    2017-12-02 18:39
    70
  • 水平渐近线与铅直渐近线

    可以用求极限的方法来求一个函数的渐近线。公式: ①水平渐近线: limx→∞f(x)=a⇒y=a\lim_{x \to \infty}f(x) = a \Rightarrow y = a ②铅直...

    2018-01-02 10:37
    74
  • 极限运算法则

    定理一: 两个无穷小的和是无穷小 推论:有限个无穷小之和也是无穷小(数学归纳法可证) 定理二: 有界函数与无穷小的乘积是无穷小 推论1:常数与无穷小的乘积是无穷小 推论2:有限个无穷小的乘积是无穷...

    2018-01-02 11:05
    25
  • 无穷小的比较

    定义: 如果limβα=0\lim \frac{\beta}{\alpha} = 0,那么就是说β\beta是比α\alpha高阶的无穷小,记作β=o(α)\beta = o(\alpha); 如...

    2018-01-02 12:04
    43
  • 两个重要极限及相关推导极限

    两个重要极限: ①limx→0sinxx=1\lim_{x \to 0}\frac{\sin x}{x} = 1 ②limx→∞(1+1x)x=e\lim_{x \to \infty}(1 + \...

    2018-01-06 21:38
    95
  • 无穷小的等价代换

    定理: 设有α∼α˜,β∼β˜\alpha \sim \widetilde \alpha, \beta \sim \widetilde \beta, 且limβ˜α˜存在\lim \frac{\wi...

    2018-01-06 22:07
    41

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部