博客专栏  >  综合   >  深度学习

深度学习

本系列文章主要讲解深度学习相关算法

关注
356 已关注
63篇博文
  • 深度学习(六十五)移动端网络MobileNets

    1、L2 decay权重对精度的影响:根据文献介绍,在引入可分离卷积层的时候,建议不用用L2权重,对降低精度,于是做了如下实验:第二行是采用L2 weight decay为0.00005的权重,明显最...

    2017-06-01 15:04
    330
  • 深度学习(六十四)Faster R-CNN物体检测

    在经典的RCNN中,物体检测的效果取得了State-of-the-art的效果,但是由于计算速度比较慢,后来在SPPNET、Fast R-CNN中,用卷积神经网络一次性提取一整张图片的特征图,然后在根...

    2017-06-17 19:53
    783
  • 深度学习(六十三)空间变换网络

    卷积神经网络每一层都有其强大的功能,然而它对于输入数据的空间不变性却还有很大的缺陷,可能max pooling层,具有平移不变性,然而因为max pooling是一个局部操作,在CNN中对于大尺度的空...

    2017-06-07 22:42
    1146
  • 深度学习(六十二)SqueezeNet网络设计思想笔记

    1、尽量用1*1的卷积核替代3*3的卷积核 尽可能选择1*1的卷积核为主,因为1*1的卷积核比3*3的卷积核参数少了9倍。 2、引入Squeeze layer,尽量减少每一层的输入特征图数量 比如对于...

    2017-05-30 11:09
    304
  • 深度学习(六十一)NNPACK 移植与实验

    1、克隆下载NNPACK2、克隆下载pthreadpool,把其中的include、src文件,共三个文件分别复制到NNPACK,合并include、src文件3、下载fixdiv,把头文件复制到nn...

    2017-03-25 18:19
    583
  • 深度学习(六十)网络压缩简单总结

    增加L2权重 增加L2权重可以让更多的权重,靠近0,这样每次修剪的比例大大增加。 四、从结构上,简化网络计算, 这些需自己阅读比较多相关文献,才能设计

    2016-06-02 10:56
    1328
  • 深度学习(五十九)mxnet移植至android

    一、android移1、$NDK/build/tools/make_standalone_toolchain.py \ --arch arm --api 21 --install-dir /t...

    2017-04-20 19:02
    508
  • 深度学习(五十八)caffe移植至mxnet

    1、模型转换2、外部引用set(USE_CUDA OFF) set(USE_CUDNN OFF) add_subdirectory("./3dparty/mxnet/") target_link_l...

    2017-04-18 15:43
    483
  • 深度学习(五十七)tensorflow andorid yolo物体检测测试

    一、修改tensorflow/workspace文件,取消android相关注释# Uncomment and update the paths in these entries to build t...

    2017-05-17 14:50
    347
  • 深度学习(五十六)tensorflow项目构建流程

    import tensorflow.nn.rnn_cell lstm = rnn_cell.BasicLSTMCell(lstm_size)#创建一个lstm cell单元类,隐藏层神经元个数为l...

    2016-07-13 17:05
    10328
  • 深度学习(五十五)tensorflow分布式训练

    Cluster、Job、task概念:三者可以简单的看成是层次关系:task可以看成诗每台机器上的一个进程,每个机器一般只有一个task。多个task称之为job,job又有:ps、worker两种,...

    2017-03-10 15:02
    2106
  • 深度学习(五十四)图片翻译WGAN实验测试

    WGAN相比于GAN的优点在于:具有更高的稳定性。在原始的WGAN中,作者通过一堆的理论,提出了WGAN,理论证明n多页,不过代码实现就两行:(1)去掉了判别网络的判别的概念,在原始的GAN中,判别网...

    2017-03-04 21:12
    2582
  • 深度学习(五十三)对抗网络

    再举个实际一点的例子:假设有A、B两个人,A是银行的职员,其工作职责是判别真假人民币,防止假钞泛滥;B是专门造假钞的,他的职责是要尽量的造出更加逼真的人民币,来谋取利益。A、B为了混口饭吃,将在不断的...

    2017-02-25 15:28
    1157
  • 深度学习(五十二)变分贝叶斯自编码器(下)

    在生成模型中,假设样本数据X={xi}是根据某个随机过程进行采样得到,每个样本根据某个未知的概率分布函数相互独立采样得到,并且这个未知的概率分布取决于连续的潜变量Z。数据集采样过程分成两个步骤:(1)...

    2017-02-25 15:33
    1086
  • 深度学习(五十一)变分贝叶斯自编码器(上)

    度生成模型比较常碰到的有三个:对抗网络、变分自编码、DBN。学习深度生成模型,涉及到比较多的贝叶斯学派观点,所以公式难免一大堆,贝叶斯观点:对于每个观测数据x,是从分布函数x~p(x)中采样得到。比如...

    2017-02-23 19:15
    1305
  • 深度学习(五十)基于条件对抗网络的图片翻译

    在图像处理领域,许多问题都涉及到图片到图片的转换问题,就像语言翻译一样,从英语到法语。类似于语言自动翻译一般,paper定义:图片的一种表示到另一种表示转换问题,命名为图片翻译问题。语言翻译之所以难,...

    2017-02-21 19:23
    863
  • 深度学习(四十九)Tensorflow提高代码效率笔记

    最近在自己从头到尾利用tensorflow写深度学习相关算法的时候,发现自己写的出来的模型,训练速度很慢,比caffe慢了n多倍,所以就查找了一下tensorflow官网,编写代码、提高效率,需要注意...

    2017-02-21 19:11
    1139
  • 深度学习(四十八)InfoGAN学习笔记

    本文是本人阅读《InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversar...

    2017-02-18 11:10
    1956
  • 深度学习(四十七)DSD正则化训练方法

    这几年DNNs在诸多领域取得了重大突破,从计算机视觉到自然语言、语音识别,网络正则化是提高网络泛化能力的重要方法,深度学习常见正则化方法包括drop out、L2等正则。本文主要提出了一种DSD深度网...

    2017-01-15 20:33
    710
  • 深度学习(四十六)Adversarial Autoencoders学习笔记

    如上图所示,x、z分别表示输入样本输入、编码向量z。p(z)是我们希望加入的潜变量先验分布,q(z|x)是编码分布函数,p(x|z)是解码分布函数,pd(x)表示真实的数据分布,p(x)表示模型数据分...

    2017-01-13 18:58
    1409

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部