博客专栏  >  综合   >  深度学习与计算机视觉

深度学习与计算机视觉

本专栏专注于深度学习在计算机视觉领域的技术,针对图像识别等问题,从传统的SVM与逻辑回归分类器,到卷积神经网络/深度学习的技术细节。欢迎大家关注和提意见。

关注
665 已关注
11篇博文
  • 深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统

    本系统是基于CVPR2015的论文《Deep Learning of Binary Hash Codes for Fast Image Retrieval》实现的海量数据下的基于内容图片检索系统,25...

    2016-03-11 15:46
    29650
  • 深度学习与计算机视觉系列(10)_细说卷积神经网络

    前面九讲对神经网络的结构,组件,训练方法,原理等做了介绍。现在我们回到本系列的核心:计算机视觉,神经网络中的一种特殊版本在计算机视觉中使用最为广泛,这就是大家都知道的卷积神经网络。卷积神经网络和普通的...

    2016-01-19 19:27
    41802
  • 深度学习与计算机视觉系列(9)_串一串神经网络之动手实现小例子

    前面8小节,算从神经网络的结构、简单原理、数据准备与处理、神经元选择、损失函数选择等方面把神经网络过了一遍。这个部分我们打算把知识点串一串,动手实现一个简单的2维平面神经网络分类器,去分割平面上的不同...

    2016-01-15 01:01
    21979
  • 深度学习与计算机视觉系列(8)_神经网络训练与注意点

    在前一节当中我们讨论了神经网络静态的部分:包括神经网络结构、神经元类型、数据部分、损失函数部分等。这个部分我们集中讲讲动态的部分,主要是训练的事情,集中在实际工程实践训练过程中要注意的一些点,如何找到...

    2016-01-15 00:52
    23465
  • 深度学习与计算机视觉系列(7)_神经网络数据预处理,正则化与损失函数

    1. 引言 上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。 2. 数据与网络的设定 前一节提到...

    2016-01-03 16:43
    45334
  • 深度学习与计算机视觉系列(6)_神经网络结构与神经元激励函数

    1.2 单个神经元的分类作用 以sigmoid函数作为神经元的激励函数为例,这个大家可能稍微熟悉一点,毕竟我们逻辑回归部分重点提到了这个非线性的函数,把输入值压缩成0-1之间的一个概率值。而通过这个...

    2016-01-16 17:57
    40869
  • 深度学习与计算机视觉系列(5)_反向传播与它的直观理解

    其实一开始要讲这部分内容,我是拒绝的,原因是我觉得有一种写高数课总结的感觉。而一般直观上理解反向传播算法就是求导的一个链式法则而已。但是偏偏理解这部分和其中的细节对于神经网络的设计和调整优化又是有用的

    2016-01-16 17:17
    36094
  • 深度学习与计算机视觉系列(4)_最优化与随机梯度下降

    上一节深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器中提到两个对图像识别至关重要的概念: 用于把原始像素信息映射到不同类别得分的得分函数/score function 用于评估参数...

    2015-12-04 18:58
    27516
  • 深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器

    这个部分我们介绍一类新的分类器方法,而对其的改进和启发也能帮助我们自然而然地过渡到深度学习中的卷积神经网。有两个重要的概念: 得分函数/score function:将原始数据映射到每个类的打分的函...

    2015-11-23 19:11
    42700
  • 深度学习与计算机视觉系列(2)_图像分类与KNN

    图像分类问题这是很久以前就引起关注的一类图像相关问题。 对于一张输入的图片,要判定它属于给定的一些标签/类别中的哪一个。看似很简单的一个问题,这么多年却一直是计算机视觉的一个核心问题。应用场景也非常...

    2015-11-20 17:16
    31444
  • 深度学习与计算机视觉系列(1)_基础介绍

    为了简单易读易懂,这个系列中绝大多数的代码都使用python完成。这里稍微介绍一下python和Numpy/Scipy(python中的科学计算包)的一些基础。 python是一种长得像伪代码,具备...

    2015-11-17 00:14
    19954
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部