博客专栏  >  综合   >  探讨模式识别

探讨模式识别

通过对模式识别的基础理论、最新国外的方法和各种应用,即:支持向量,Boost方法,上下文相关分类,Markov模型,高斯混合模型以及给合纹理特征,机器学习和生物特征识别等基本概念和算法进行学习与实践。

关注
3 已关注
10篇博文
  • 贝叶斯(Bayes)决策理论

    在博文【模式识别PR和模式的概念】介绍了相关的模式识别与模式的概念。在本节描述所要讨论的问题之前,再提一下对于待识别的物理对象的描述问题。假设一个待识别的物理对象用其d个属性观察值描述,称之为d个特征...

    2014-04-12 10:34
    9442
  • 模式识别PR和模式的概念

    模式识别这个词就显得陌生而难以理解了。确切地说,模式识别在这里是针对让计算机来判断事物而提出的,如检测病理切片中是否有癌细胞,文字识别,话语识别,图像中物体识别等等。该学科研究的内容是使机器能做以前只...

    2014-04-05 23:39
    2062
  • 学习笔记:Kernel Method

    核函数数学推导如下所示:

    2014-04-01 12:39
    3582
  • 关于判别模型和生成模型

    简单的说,假设o是观察值,q是模型。如果对P(o|q)建模,就是Generative模型。其基本思想是首先建立样本的概率密度模型,再利用模型进行推理预测。要求已知样本无穷或尽可能的大限制。这种方法一般...

    2013-07-12 18:54
    2284
  • 支持向量机SVM核函数分析

    将核函数形式化定义。如果原始特征内积是,映射后为,那么定义核函数(Kernel)为。因些,我们可以得出结论,如果要实现该节开头的效果,只需先计算,然后计算即可,然而这种计算方式是非常低效的。

    2013-07-13 06:09
    4013
  • 随机森林Random Forest

    在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所...

    2013-08-25 18:46
    18135
  • 从几何解释SVD分解

    SVD分解(奇异值分解),实际上,SVD分解不但很直观,而且极其有用。SVD分解提供了一种方法将一个矩阵拆分成简单的,并且有意义的几块。它的几何解释可以看做将一个空间进行旋转,尺度拉伸,再旋转三步过程...

    2014-01-14 19:31
    2746
  • 特征向量几何意义

    特征向量有很明确的几何意义,矩阵或方阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量.特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变...

    2014-01-08 22:45
    1902
  • 霍夫变换(Hough Transform)直线检测

    在图像处理中,如果图像由已知形状和大小的物体组成,需要找出物体的形状的问题。在解决这些问题的许多可能方法中,一种是在图像中移动一个合适形状和大小的掩模,寻找图像与掩模的相关性,因由于形状变形,旋转、缩...

    2013-12-05 15:51
    12055
  • 支持向量机SVM分析

    1995年Vapnik等人[2]提出一种机器学习的新方法支持向量机(Support Vector Machine,SVM)之后,支持向量机成为继人工神经网络之后又一研究热点。SVM 算法的核心在于最优...

    2013-07-06 18:27
    4521
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部