博客专栏  >  移动开发   >  机器学习与数据挖掘

机器学习与数据挖掘

本系列将涵盖机器学习与数据挖掘领域最常用的算法,包括有监督学习分类/回归算法与无监督学习聚类等算法,以及神经网络。并试图给出机器学习/数据挖掘算法解决实际问题的思路,方法与技巧。欢迎大家关注。

关注
342 已关注
25篇博文
  • 机器学习系列(20)_机器学习性能改善备忘单

    机器学习最有价值(实际应用最广)的部分是预测性建模。也就是在历史数据上进行训练,在新数据上做出预测。 而预测性建模的首要问题是: 如何才能得到更好的结果? 这个备忘单基于本人多年的实践,以及我对顶...

    2016-12-04 10:46
    10608
  • 机器学习系列(19)_通用机器学习流程与问题解决架构模板

    本文由Searchmetrics公司高级数据科学家Abhishek Thakur提供。 “一个中等水平的数据科学家每天都要处理大量的数据。一些人说超过60%到70%的时间都用于数据清理、数据处理及格式...

    2016-10-24 11:20
    18043
  • 机器学习系列(18)_Kaggle债务违约预测冠军经验分享

    债务违约预测是Kaggle中的一个比赛,本文将介绍取得第一名成绩的方法,本次比赛的目标包括两个方面。其一是建立一个模型,债务人可以通过它来更好地进行财务方面的决策。其二是债权人可以预测这个债务人何时会...

    2016-10-11 15:54
    19186
  • 机器学习系列(17)_Yelper推荐系统

    “推荐”可是个当红话题。Netflix愿意用百万美金召求最佳的电影推荐算法,Facebook也为了登陆时的推荐服务开发了上百个项目,遑论现在市场上各式各样的应用都需要个性化服务。“从互联网中提取信息犹...

    2016-10-10 15:38
    19834
  • 机器学习系列(16)_怎样找到一份深度学习的工作(附学习材料,资源与建议)

    如果你是一个软件工程师(或者你现在正在学习这一方面),你肯定有机会听说过深度学习(有时候深度学习缩写为”DL”)。它现在是一个热门、且快速发展的研究领域,解决工业界的一系列问题,从图像识别、手写识别到...

    2016-10-10 14:43
    25824
  • 机器学习系列(15)_SVM碎碎念part3:如何找到最优分离超平面

    是的,咱们第1篇blog介绍了目标;第2篇blog介绍了向量相关的背景数学知识,看到了如何求解Margin的值;今天这个部分主要目的是和大家一起来看看,选择最优超平面的推理过程。 以下是本篇的一个简...

    2016-09-27 18:36
    14560
  • 机器学习系列(14)_SVM碎碎念part2:SVM中的向量与空间距离

    第一篇博客part1的部分很短,就说了一个事情,SVM在试图找一个Max Margin(最大间隔)的分离超平面。OK,这个部分要补补基础,复习一下数学,为后面的学习做准备(墙裂建议数学基础好的同学略过...

    2016-09-27 11:59
    10738
  • 机器学习系列(13)_SVM碎碎念part1:间隔

    欠的总归是要还的,SVM这么神圣的算法是每个学习machine learning的同学可能会头痛却又不得不面对的,即使到现在为止博主这样的Math/CS渣都觉得一定没有领悟到SVM精髓,所以整理了一些...

    2016-09-27 10:23
    9046
  • 机器学习系列(12)_XGBoost参数调优完全指南(附Python代码)

    这篇文章主要讲了如何提升XGBoost模型的表现。首先,我们介绍了相比于GBM,为何XGBoost可以取得这么好的表现。紧接着,我们介绍了每个参数的细节。我们定义了一个可以重复使用的构造模型的函数。 ...

    2016-09-25 23:35
    36479
  • 机器学习系列(11)_Python中Gradient Boosting Machine(GBM)调参方法详解

    这篇文章详细地介绍了GBM模型。我们首先了解了何为boosting,然后详细介绍了各种参数。 这些参数可以被分为3类:树参数,boosting参数,和其他影响模型的参数。最后我们提到了用GBM解决问题...

    2016-09-25 17:33
    28529
  • 机器学习系列(10)_如何提高深度学习(和机器学习)的性能

    我经常被问到诸如`如何从深度学习模型中得到更好的效果`的问题,类似的问题还有:我如何提升准确度,如果我的神经网络模型性能不佳,我能够做什么? 对于这些问题,我经常这样回答,“我并不知道确切的答案,但...

    2016-09-24 23:34
    20330
  • 机器学习系列(9)_机器学习算法一览(附Python和R代码)

    写这篇文章的目的,就是希望它可以让有志于从事数据科学和机器学习的诸位在学习算法的路上少走些路。我会在文章中举例一些机器学习的问题,你们也可以在思考解决这些问题的过程中得到启发。我也会写下对于各种机器学...

    2016-04-19 16:04
    31511
  • 机器学习系列(8)_读《Nature》论文,看AlphaGo养成

    本文的主要目的是增进分享,交流学习,方便初学者了解AlphaGo中的算法,以及一些机器学习中的常见思路。真正的工程实现过程远比本文介绍得复杂。 本文更多是启发式地进行阐述与分析,包括一些作者结合自己的...

    2016-03-16 11:27
    24865
  • 机器学习系列(7)_机器学习路线图(附资料)

    计算机从数据中学习出规律和模式,以应用在新数据上做预测的任务。近年来互联网数据大爆炸,数据的丰富度和覆盖面远远超出人工可以观察和总结的范畴,而机器学习的算法能指引计算机在海量数据中,挖掘出有用的价值,...

    2016-02-28 11:54
    40425
  • NLP系列(4)_朴素贝叶斯实战与进阶

    本文为朴素贝叶斯的实践和进阶篇,先丢了点干货,总结了贝叶斯方法的优缺点,应用场景,注意点和一般建模方法。紧接着对它最常见的应用场景,抓了几个例子,又来了一遍手把手系列,不管是对于文本主题分类、多分类问...

    2016-02-03 15:07
    29657
  • NLP系列(3)_用朴素贝叶斯进行文本分类(下)

    上一篇文章我们主要从理论上梳理了朴素贝叶斯方法进行文本分类的基本思路。这篇文章我们主要从实践上探讨一些应用过程中的tricks,并进一步分析贝叶斯方法,最后以情绪褒贬分析和拼写纠错为例展示这种简单强大...

    2016-02-03 15:02
    23849
  • NLP系列(2)_用朴素贝叶斯进行文本分类(上)

    1. 引言 贝叶斯方法是一个历史悠久,有着坚实的理论基础的方法,同时处理很多问题时直接而又高效,很多高级自然语言处理模型也可以从它演化而来。因此,学习贝叶斯方法,是研究自然语言处理问题的一个非常好的切...

    2016-02-01 09:51
    22320
  • 机器学习系列(6)_从白富美相亲看特征预处理与选择(下)

    初步划定特征的范围,获取特征 李雷早就想过这个问题了。长期的职业素养让他对任何事情都想用机器学习的方法去鼓捣。李雷的基本思路是这样的,我们尽可能观察螃蟹更多的特征,从中找出与“螃蟹满黄”最相关的特征...

    2016-01-12 11:54
    33365
  • 机器学习系列(5)_从白富美相亲看特征预处理与选择(上)

    讲机器学习为什么要讲相亲?被讨论群里的小伙伴催着相亲,哦不,催着讲特征工程紧啊。只是我们不太敢讲这么复杂高深的东西,毕竟工程实践的经验太复杂了,没有统一的好解释的理论,一般的教材讲这方面的内容不多。我...

    2016-01-08 12:20
    24724
  • 手把手入门神经网络系列(2)_74行代码实现手写数字识别

    作者: 龙心尘&&寒小阳 时间:2015年12月。 出处: http://blog.csdn.net/longxinchen_ml/article/details/50281247 声明:版...

    2015-12-13 12:36
    35133
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部