博客专栏  >  综合   >  机器学习与数学模型

机器学习与数学模型

里面收集部分工业界常用算法与数学证明,以及部分数学建模问题的求解。

关注
23 已关注
56篇博文
  • 机器学习和数据挖掘(9):线性模型

    线性模型非线性变换的代价非线性变换回顾在之前的文章中我们说过了非线性变换,我们有一个输入x=(x0,…,xd){\bf x}=(x_0,\dots,x_d),通过一个Φ\Phi变化,我们将之投影到一个...

    2017-08-08 21:26
    257
  • 机器学习和数据挖掘(8):偏见方差权衡

    偏见方差权衡偏见和方差我们一直试图在近似和泛化之间找到一个平衡。我们的目标是得到一个较小的EoutE_{out},也希望在样例之外也表现得非常棒的EoutE_{out}。复杂的假设集H\mathcal...

    2017-08-06 21:48
    89
  • 机器学习和数据挖掘(7):VC维

    VC维回顾与说明如果一个假设空间存在突破点,则一定存在成长函数mH(N)m_{\mathcal H}(N)被某个上限函数B(N,k)B(N,k)所约束,而上限函数等于一个组合的求和形式∑k−1i=0C...

    2017-07-24 11:49
    134
  • 机器学习和数据挖掘(6):雷蒙保罗MAPA泛化理论

    泛化理论上一章中提到的生长函数mH(N)m_{\mathcal H}(N)的定义:假设空间在NN个样本点上能产生的最大二分(dichotomy)数量,其中二分是样本点在二元分类情况下的排列组合。上一章...

    2017-07-22 20:45
    268
  • 机器学习和数据挖掘(5):训练与测试

    回顾与说明不像上一章的学习流程图,我们这里假设可学习的数据来自于一个统一的分布(不考虑噪声的情况),且假设空间中的假设函数为有限个的情况下,其学习流程图如图所示。我们这里假设训练样本和测试样本本来自同...

    2017-07-21 11:05
    166
  • 机器学习和数据挖掘(4):噪声与误差

    机器学习中的噪声与误差噪音(Noise)实际应用中的数据基本都是有干扰的,还是用信用卡发放问题举例子:噪声产生原因: 标记错误:应该发卡的客户标记成不发卡,或者两个数据相同的客户一个发卡一个不发卡; ...

    2017-07-20 16:08
    225
  • 机器学习和数据挖掘(3):线性模型

    感知器模型基本概念线性可分:在特征空间中可以用一个线性分界面正确无误地分开两类样本;采用增广样本向量,即存 在合适的增广权向量 a 使得:则称样本是线性可分的。如下图中左图线性可分,右图不可分。所有满...

    2017-07-12 10:28
    429
  • 机器学习与数据挖掘(2):学习的可能性

    ① 偏倚(bias)和方差(variance)在讨论线性回归时,我们用一次线性函数对训练样本进行拟合(如图1所示);然而,我们可以通过二次多项式函数对训练样本进行拟合(如图2所示),函数对样本的拟合程...

    2017-07-08 20:31
    402
  • Logistic回归:牛顿迭代法

    Logistic回归与牛顿迭代法很早之前介绍过《无约束的最优方法》里面介绍了梯度下降法和牛顿迭代法等优化算法。同时大家对于Logistic回归中的梯度下降法更为熟悉,而牛顿迭代法对数学要求更高,所以这...

    2017-03-23 17:05
    639
  • 大数据导论(二) Hadoop简介

    基本介绍Google(自称)为云计算概念的提出者,在自身多年的搜索引擎业务中构建了突破性的GFS(Google File System),从此文件系统进入分布式时代。除此之外,Google在GFS上如...

    2017-02-12 10:57
    558
  • 大数据导论(一) 6V

    大数据有几个特性,最著名的是数据量(volume),速度(velocity),多样性(variety)。除此以外,还有就是准确性(veracity),连通性(valence), 和价值(value) ...

    2017-01-31 20:54
    813
  • 数据挖掘中的模式发现(八)轨迹模式挖掘、空间模式挖掘

    这是模式挖掘、数据挖掘的一部分应用。空间模式挖掘(Mining Spatiotemporal Patterns)两个空间实体之间存在若干拓扑关系,这些关系基于两个实体的位置: 分离 相交 包含 如图所...

    2017-02-08 17:01
    1101
  • 数据挖掘中的模式发现(七)GSP算法、SPADE算法、PrefixSpan算法

    这前两个算法真是出人意料地好理解GSP算法GSP算法是AprioriAll算法的扩展算法,其算法的执行过程和AprioriAll类似。其核心思想是:在每一次扫描(pass)数据库时,利用上一次扫描时产...

    2017-02-06 11:09
    1549
  • 数据挖掘中的模式发现(六)挖掘序列模式

    序列模式挖掘序列模式挖掘(sequence pattern mining)是数据挖掘的内容之一,指挖掘相对时间或其他模式出现频率高的模式,典型的应用还是限于离散型的序列。。其涉及在数据示例之间找到统计...

    2017-02-05 16:32
    1246
  • 数据挖掘中的模式发现(五)挖掘多样频繁模式

    挖掘多层次的关联规则(Mining Multi-Level Associations)定义项经常形成层次。如图所示那么我们可以根据项的细化分类得到更多有趣的模式,发现更多细节的特性。Level-red...

    2017-02-04 15:40
    636
  • 数据挖掘中的模式发现(四)模式评估(Pattern Evaluation)

    Pattern Evaluation简介模式评估指的是根据某种兴趣度度量,识别代表知识的真正有趣的模式。 我们之前通过support-confidence association rule mini...

    2017-02-03 10:39
    738
  • 数据挖掘中的模式发现(三)FpGrowth算法

    简介前两篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次...

    2017-02-01 11:24
    602
  • 数据挖掘中的模式发现(二)Apriori算法

    基本概念对于A→BA\rightarrow B 支持度(support):P(A∩B)P(A ∩ B),既有A又有B的概率 置信度(Confidence Strength):conf(A→B)=sup...

    2017-01-27 14:51
    1246
  • 数据挖掘中的模式发现(一)频繁项集、频繁闭项集、最大频繁项集

    Frequent Itemset(频繁项集)称I={i1,i2,...,im}I=\{i_1, i_2, ..., i_m\}为项(Item)的集合,D={T1,T2,...,Tn}D=\{T_1, ...

    2017-01-26 10:17
    1215
  • 用卷积神经网络检测脸部关键点的教程(四)通过前训练(pre-train)训练专项网络

    本文翻译自Using convolutional neural nets to detect facial keypoints tutorial。用卷积神经网络检测脸部关键点的教程(一)环境配置与浅层...

    2016-12-14 21:57
    473

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部