博客专栏  >  架构   >  机器学习

机器学习

剖析机器学习的原理过程、实战项目和代码

关注
6 已关注
24篇博文
  • Android-中国象棋-实时识别-实时AI

    android 中国象棋 实时识别 实时AI

    2016-09-18 23:07
    2078
  • Ubuntu14.04-x64+Caffe

    caffe Ubuntu 编译问题及解决方法

    2016-03-18 09:18
    3754
  • Kmeans、Kmeans++和KNN算法比较

    K-Means介绍        K-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据他们的属性分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相...

    2016-03-17 18:51
    998
  • 朴素贝叶斯分类

    朴素贝叶斯分类器

    2016-03-17 16:56
    992
  • cart决策树

    分类与回归树(CART——Classification And Regression Tree) 在已知各种情况的概率,用直观图表求最大期望的方法。

    2016-03-17 15:53
    915
  • HMM隐Markov模型的原理及应用建模

    GMM-HMM 隐Markov模型 隐形马尔科夫模型

    2016-03-15 15:51
    1933
  • 机器学习(十八)异常检测

    机器学习(十八)异常检测问题提出实际生产过程中,出产投入使用之前,经常会评价某些参数是否有异常,然后再判断是否要重新检测。评价并不是简单的根据特定参数的阈值来的,而是根据宏观上产出群体的所有参数分布得...

    2015-11-16 11:45
    6753
  • 机器学习(十七)主成分分析(Principle Component Analysis)

    主成分分析想法来源:数据压缩、可视化PCA:主成分分析。目的就是把有意义的样本点数据适当地降维表达。如果是降到3维或者2维就可以可视化表达了。这其中,针对常用的样本点来说,肯定是有数据损失的。问题是如...

    2015-11-11 18:25
    2362
  • 机器学习(十六)无监督学习、聚类和KMeans聚类

    无监督学习、聚类聚类是在样本没有标注的情况下,对样本进行特征提取并分类,属于无监督学习的内容。有监督学习和无监督学习的区别就是需要分析处理的数据样本是否事先已经标注。如下图,左边是有监督,右边是无监督...

    2015-11-02 23:00
    4337
  • 机器学习(十五)有监督学习总结

    有监督学习总结

    2015-11-01 20:09
    847
  • 机器学习(十四)SVM总结

    SVM直观理解总结

    2015-11-01 19:21
    683
  • 机器学习(十三)学习SVM支持向量机的直观感受

    如果说傅里叶函数是三菱镜,那基于核函数的SVM支持向量机,从直观上理解,就是m(样本数)个基于K(分类的类型数)个类型的结果分类的样本核不断匀速膨胀的肥皂泡(实际中用的不是球形肥皂泡,而是高斯核函数,...

    2015-10-24 23:12
    693
  • 机器学习(十二)学习SVM支持向量机过程中的引申

    SVM 支持向量机 引申

    2015-10-24 16:01
    574
  • 机器学习(十一)机器学习系统设计的细节问题

    1、初期:如何提炼特征?头脑风暴 2、前期: 1)首先实现一种简单算法,能快速使用交叉检验测试,然后画学习曲线,再决定是否要更多数据、特征变量等,避免前期过度优化。 2)将交叉检验分错的部分人工分析一...

    2015-10-23 22:29
    781
  • 机器学习(十)机器学习模型的评价

    模型不理想时,怎么调整模型?是要更多样本?是要更多特征?正规化的λ应该更大或者更小? 怎么评价模型是否理想?欠拟合或者过拟合?将数据分为训练集70%、测试集30%。 通过训练集得到可能的Θ矩阵,然...

    2015-10-22 08:29
    2840
  • 机器学习(九)反向传播算法

    机器学习(九)反向传播算法

    2015-10-21 13:34
    3145
  • 机器学习(八)前馈神经网络

    前馈神经网络用于解决逻辑回归来处理太复杂的情况。提高灵活性的同时,又不太会有过拟合的情况。 神经网络的结点内部是Sigmoid函数,外部有输入、Theta加权值,最后一级网络层如果只有一个输出结点...

    2015-10-19 13:07
    5174
  • 机器学习(七)线性回归、正规方程、逻辑回归的正规化

    问题:过分拟合 解决方法:为代价函数引入新的参数项 1)线性回归        代价函数       梯度 2)正规方程       方程 3)逻辑回归       代价函数       梯度

    2015-10-19 10:14
    1650
  • 机器学习(六)梯度下降的优化算法和matlab/octave中的应用

    为了分类,需要计算代价函数、代价函数关于参数的偏导数

    2015-10-16 19:05
    1527
  • 机器学习(五)逻辑回归分类

    在大多数情况下,线性回归分类并不能较好的判定,如图 其中紫红色的线表示在未出现最右侧样本点的情况下的预测,而当有最右侧点时,线性回归预测变为蓝色线。这时再看中间的一些点,实际结果都与预测的是相反的...

    2015-10-10 17:52
    998
img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部