博客专栏  >  综合   >  machine learning

machine learning

专注于机器学习算法的学习与研究,与大家分享机器学习的乐趣

关注
6 已关注
25篇博文
  • 常见面试之机器学习算法思想简单梳理

    前言:   找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,...

    2013-11-12 22:11
    4221
  • 奇异值分解

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文...

    2013-07-26 15:42
    1079
  • Logistic Regression

    初步接触 谓LR分类器(Logistic Regression Classifier),并没有什么神秘的。在分类的情形下,经过学习之后的LR分类器其实就是一组权值w0,w1,...,wm.  当测试...

    2013-07-26 15:45
    1360
  • k-means聚类算法

    K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-...

    2013-07-26 16:06
    1851
  • EM算法

    EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶...

    2013-07-26 16:08
    1363
  • 混合高斯模型和EM算法

    这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。       与k-means一样,给定的训练样本是,我们将隐含...

    2013-07-26 16:11
    1192
  • 判别模型、生成模型与朴素贝叶斯方法

    1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为,在参数确定的情况下,求解条件概率。通俗的解释为在给定特征后预测结果出现的概率。 比如...

    2013-07-26 16:14
    1139
  • 线性回归,logistic回归和一般回归

    1 摘要       本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识。前四节主要讲述了回归问题,回归属于有监督学习中的一种方法。该方法的核心思想是从连续型统计数据中得到数...

    2013-07-26 17:48
    1603
  • 机器学习中规则化和模型选择知识

    1 问题      模型选择问题:对于一个学习问题,可以有多种模型选择。比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归。那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? ...

    2013-07-26 17:51
    1761
  • 线性判别分析算法(LDA)

    1. 问题      之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但...

    2013-07-26 17:55
    3018
  • 主成分分析(PCA)

    主成分分析(Principal components analysis)-最大方差解释 在这一篇之前的内容是《Factor Analysis》,由于非常理论,打算学完整个课程后再写。在写这篇之前,...

    2013-07-26 17:58
    2687
  • 增强学习 (reinforcement learning)

    在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y。之后对样本进行拟合、分类、聚类或者降维等操作。然而对于很多序列决策或者控制问题,很难有这么规则的样本。比如,四足机器人的控制问题,...

    2013-07-26 18:00
    1659
  • 机器学习中的决策树算法

    一.简介   决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。 二.决策树的表示法   决策树通过把实例从艮节点排列到某个叶子结点来分类实例,叶子结点即为实...

    2013-07-26 18:02
    1365
  • 奇异值分解SVD应用——LSI

    潜在语义索引(Latent Semantic Indexing)是一个严重依赖于SVD的算法,本文转载自之前吴军老师《数学之美》和参考文献《机器学习中的数学》汇总。 ———————————— 在自...

    2013-07-27 14:48
    1414
  • Stanford机器学习---神经网络的学习 Neural Networks learning

    本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学...

    2013-07-27 14:52
    1491
  • 机器学习十大经典算法

    一、C4.5 C4.5,是机器学习算法中的一个分类决策树算法, 它是决策树(决策树也就是做决策的节点间的组织方式像一棵树,其实是一个倒树)核心算法 ID3的改进算法,所以基本上了解了一半决策树构...

    2013-07-27 17:19
    9964
  • C4.5决策树

    C4.5决策树 C4.5决策树在ID3决策树的基础之上稍作改进,请先阅读ID3决策树。 C4.5克服了ID3的2个缺点: 1.用信息增益选择属性时偏向于选择分枝比较多的属性值,即取值多的属性 ...

    2013-07-28 13:40
    1434
  • curse of dimensionality维数灾难

    curse of dimensionality维数灾难 或者翻译成维度的咒语,这个咒语出现在很多方面: sampling采样 如果数据是低维的,所需的采样点相对就比较少;如果...

    2013-07-28 13:43
    3219
  • 机器学习算法之CART(分类回归树)概要

    分类回归树  classification and regression tree(C&RT)  racoon 优点 (1)可自动忽略对目标变量没有贡献的属性变量,也为判断属性变量的重要性,减少变量...

    2013-07-29 11:37
    2202
  • 机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点

    简述机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点等。 1)C4.5算法: ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属...

    2013-07-29 15:35
    2510

程序设计
5151708
算法面试
471104

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部