博客专栏  >  编程语言   >  机器学习详解

机器学习详解

对应机器学习经典的算法进行分析原理,包括:SVM、线性回归、KNN、贝叶斯方法、adaboost、GMM、CRF等,以及各种优化算法如梯度下降、SMO、EM等。

关注
15 已关注
10篇博文
  • 【机器学习详解】解无约束优化问题:梯度下降、牛顿法、拟牛顿法

    无约束优化问题是机器学习中最普遍、最简单的优化问题。 x∗=minx f(x),x∈Rnx^*=min_{x}\ f(x),x\in R^n1.梯度下降梯度下降是最简单的迭代优化算法,每一次迭代需求...

    2016-07-06 20:58
    5128
  • 【机器学习详解】决策树与随机森林算法

    决策树决策树模型是一种树形结构,基于特征对实例进行分类或回归的过程。即根据某个特征把数据分划分到若干个子区域(子树),再对子区域递归划分,直到满足某个条件则停止划分并作为叶子节点,不满足条件则继续递归...

    2016-07-03 21:16
    3562
  • 【机器学习详解】AdaBoost算法原理

    概念AdaBoost是一种级联算法模型,即把几个弱分类器级联到一起去处理同一个分类问题。也就是“三个臭皮匠顶一个诸葛亮”的道理。例如一个专家作出的判定往往没有几个专家一起作出的判定更准确。一种情况:如...

    2016-06-20 20:09
    4915
  • 【机器学习详解】SMO算法剖析

    本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的。推荐参看SMO原文中的伪代码。 **1.SMO概念** ==========...

    2016-04-27 23:00
    21973
  • 【机器学习详解】矩阵奇异值分解(SVD)及其应用

    PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或...

    2016-04-10 09:29
    2423
  • 【机器学习详解】概率生成模型与朴素贝叶斯分类器

    1.概率生成模型首先介绍生成模型的概念,然后逐步介绍采用生成模型的步骤。1.1概念 即对每一种类别CkC_k分别建立一种模型p(Ck|x)p(C_k|x),把待分类数据x分别带入每种模型中,计算后...

    2016-03-31 23:39
    5510
  • 【机器学习详解】SVM解回归问题

    在样本数据集(xn,tn)中,tn不是简单的离散值,而是连续值。如在线性回归中,预测房价的问题。与线性回归类似,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面y=wTx+b,采...

    2016-04-12 10:47
    9896
  • 【机器学习详解】线性回归、梯度下降、最小二乘的几何和概率解释

    线性回归即线性拟合,给定N个样本数据(x1,y1),(x2,y2)....(xN,yN)(x_1,y_1),(x_2,y_2)....(x_N,y_N)其中xix_i为输入向量,yiy_i表示目标值,...

    2016-03-13 22:29
    6223
  • 【机器学习详解】KNN分类的概念、误差率及其问题

    KNN(K-Nearest Neighbors algorithm)是一种非参数模型算法。在训练数据量为N的样本点中,寻找最近邻测试数据x的K个样本,然后统计这K个样本的分别输入各个类别w_i下的数目...

    2016-03-18 17:23
    4020
  • 【机器学习详解】SVM解二分类,多分类,及后验概率输出

    转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台\color{Blue}{CSDN...

    2016-04-10 22:10
    12696

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部