博客专栏  >  互联网   >  机器学习系列

机器学习系列

对典型机器学习算法的汇总要点整理,及一些学习笔记总结。

关注
2 已关注
15篇博文
  • 【机器学习】EM最大期望算法

    EM, ExpectationMaximization Algorithm, 期望最大化算法。一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估...

    2014-11-09 13:56
    1525
  • 【机器学习】主题模型(二):pLSA和LDA

    一、pLSA(概率潜在语义分析)   pLSA:    -------有过拟合问题,就是求D, Z, W   pLSA由LSA发展过来,而早期LSA的实现主要是通过SVD分解。pLSA的模型图...

    2014-11-04 14:47
    2627
  • 【机器学习】主题模型(一):条件概率、矩阵分解

    两篇文档是否相关往往不只决定于字面上的词语重复,还取决于文字背后的语义关联。对语义关联的挖掘,可以让搜索更加智能化。主题模型是对文字隐含主题进行建模的方法,其克服传统信息检索中文档相似度计算方法的缺点...

    2014-11-04 09:24
    2914
  • 【机器学习】推荐系统、SVD分解降维

    推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现)、LDA、GDBT         SVD算是比较老的方法,后期演...

    2014-11-04 09:18
    4502
  • 【机器学习】关联规则挖掘(二):频繁模式树FP-growth

    Apriori算法的一个主要瓶颈在于,为了获得较长的频繁模式,需要生成大量的候选短频繁模式。FP-Growth算法是针对这个瓶颈提出来的全新的一种算法模式。目前,在数据挖掘领域,Apriori和FP-...

    2014-11-04 09:12
    1856
  • 【机器学习】关联规则分析(一):Apriori

    一、Apriori原理         Apriori是关联分析中较早的一种方法,主要用来挖掘那些频繁项集合,其思想是: 1.如果一个项目集合不是频繁集合,那么任何包含它的项目(超集)也一定不是频...

    2014-11-03 20:40
    1548
  • 【机器学习】聚类算法——K均值算法(k-means)

    一、聚类 1.基于划分的聚类:k-means、k-medoids(每个类别找一个样本来代表)、Clarans      2.基于层次的聚类:(1)自底向上的凝聚方法,比如Agnes       ...

    2014-11-03 08:49
    1466
  • 【机器学习】分类器组合——AdaBoost

    AdaBoost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。 AdaBoost其实只是boost的一个...

    2014-11-03 07:58
    2922
  • 【机器学习】支持向量机SVM

    一、步骤 1.找最大分类间隔 2.定目标函数 3.计算α值(不断调整训练)与ω值 4.SMO可以优化算法 5.核函数对高维数据处理   二、SVM 要学会如何使用libsvm以及一些参...

    2014-11-02 21:07
    1922
  • 【机器学习】分类算法——Logistic回归

    一、LR分类器(Logistic Regression Classifier)         在分类情形下,经过学习后的LR分类器是一组权值w0,w1, …, wn,当测试样本的数据输入时,这组权...

    2014-11-02 15:33
    2517
  • 【机器学习】文本分类——朴素贝叶斯Bayes

    朴素贝叶斯主要用于文本分类。文本分类常见三大算法:KNN、朴素贝叶斯、支持向量机SVM。 一、贝叶斯定理     贝叶斯公式思想:利用已知值来估计未知概率。已知某条件概率,如何得到两个事件交换后的...

    2014-11-02 09:45
    1688
  • 【机器学习】随机森林RF

    随机森林(RF, RandomForest)包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。通过自助法(boot-strap)重采样技术,不断生成训练样本和测试样本,由训练样本...

    2014-11-02 08:20
    2225
  • 【机器学习】迭代决策树GBRT(渐进梯度回归树)

    一、决策树模型组合    单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森...

    2014-11-01 23:29
    3827
  • 【机器学习】决策树C4.5、ID3

    一、算法流程          step1:计算信息熵         step2: 划分数据集                 step3: 创建决策树         step4: 利用...

    2014-11-01 21:50
    1752
  • 【机器学习】k近邻算法(kNN)

    一、写在前面         本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下M...

    2014-11-01 16:56
    1931

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部