博客专栏  >  综合   >  机器学习基石与实践

机器学习基石与实践

通过对机器学习基础理论、最新国外的方法和各种应用,即:k-近邻算法,朴素贝叶斯算法,Logistic回归算法,支持向量机,Apriori算法,FP-Growith算法,基于树的回归算法和分类回归树(CART)等基本概念和算法进行学习与实践。

关注
18 已关注
33篇博文
  • ML基础教程:泛化与过拟合、正规化最小二乘法

    Load the Olympic data and extract the training and validation data.An example of regularised least s...

    2016-07-27 11:22
    989
  • ML基础教程:线性建模的非线性响应

    线性建模的非线性响应.关于Machine Learning更多讨论与交流,敬请关注本博客和新浪微博songzi_tea.

    2016-07-23 07:46
    853
  • ML基础教程:线性建模fitlinear

    fitlinear.m .Change these to use a different dataset.关于Machine Learning更多讨论与交流,敬请关注本博客和新浪微博songzi_te...

    2016-07-22 11:14
    552
  • ML基础教程:线性建模plotlinear

    线性建模plotlinear.关于Machine Learning更多讨论与交流,敬请关注本博客和新浪微博songzi_tea.

    2016-07-19 21:17
    969
  • NTU-Coursera机器学习:機器學習技法 (Machine Learning Techniques)

    The course extends the fundamental tools in "Machine Learning Foundations" to powerful and practical...

    2015-05-21 00:05
    1999
  • NTU-Coursera机器学习:过拟合(Overfitting)与正规化(Regularization)

    噪音与数据规模我们可以理解地简单些:有噪音时,更复杂的模型会尽量去覆盖噪音点,即对数据过拟合!这样,即使训练误差Ein 很小(接近于零),由于没有描绘真实的数据趋势,Eout 反而会更大。即噪音严重误...

    2015-04-26 18:38
    2497
  • NTU-Coursera机器学习:多類別分类和非线性转换

    线性分类(感知机)、线性回归、logic回归都属于线性模型.线性分类(PLA)、线性回归、逻辑斯蒂回归的优缺点比较:(1)PLA 优点:在数据线性可分时高效且准确。缺点:只有在数据线性可分时才可行...

    2015-04-09 10:36
    1368
  • NTU-Coursera机器学习:linear回归与logistic回归

    线性回归问题例如,信用卡额度预测问题:特征是用户的信息(年龄,性别,年薪,当前债务,...),我们要预测可以给该客户多大的信用额度。 这样的问题就是回归问题。目标值y 是实数空间R。当XTX(X 的转...

    2015-03-14 13:08
    1370
  • NTU-Coursera机器学习:机器学习基石 (Machine Learning Foundations)

    这门课以8周设计,分成 4个核心问题,每个核心问题约需2周的时间来探讨.每个约2个小时的录影中,每个小时为一个主题,以会各分成4到5个小段落,每个段落里会有一个后多个随堂的练习.我们在探讨每个核心问题...

    2015-03-04 22:25
    3077
  • NTU-Coursera机器学习:HomeWork 2 Q16-20

    基于[-1,1]上的均匀分布随机生成20个样本,相应的输出有20%的错误率;20个样本将数轴分为21段,中间有19段,θ取这19段的中点当中的一个,s取1或-1。遍历所有的θ和s,找到E-in最小的(...

    2015-03-04 22:17
    1806
  • NTU-Coursera机器学习:HomeWork 1 Q15-20

    训练数据格式如下:输入有4个维度,输出为{-1,+1}。共有400条数据。 题目要求将权向量元素初始化为0,然后使用“Naive Cycle”遍历训练集,求停止迭代时共对权向量更新了几次。 所谓“Na...

    2015-03-01 22:23
    1903
  • NTU-Coursera机器学习:Noise and Error

    目标函数识别指纹以区分合法身份与非法身份,这里的错误是0/1错误。一种是false reject叫错误拒绝,即本来合法的识别成了非法;另一种叫false accept叫错误接受,即本来非法的识别成了合...

    2015-02-22 22:57
    1561
  • NTU-Coursera机器学习:VC Bound和VC维度

    这一讲开篇再介绍一个界函数(bounding function)的概念.它提供了一个对机器学习结果可靠性的衡量,因为成长函数是N的多项式,所以BAD事件发生的概率随着N的增大而显著下降。需要强调的是,...

    2015-02-22 15:51
    4106
  • NTU-Coursera机器学习:机器学习的可行性 & 训练与测试

    映射中最关键的点是讲抽样中橙球的概率理解为样本数据集D上h(x)错误的概率,以此推算出在所有数据上h(x)错误的概率,这也是机器学习能够工作的本质,即我们为啥在采样数据上得到了一个假设,就可以推到全局...

    2015-02-07 18:24
    2618
  • NTU-Coursera机器学习:Types of Learning

    本节总体思路:按照输出空间类型分Y,数据标记类型分yn,不同目标函数类型分f和不同的输入空间类型分X .其中按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构化学习等,这个好理解,离散的...

    2015-02-06 23:48
    1542
  • NTU-Coursera机器学习:機器學習問題与二元分類

    A computer program is said to learn from experience E with respect to some class of tasks T and perf...

    2015-02-02 18:57
    1836
  • 浅谈我对机器学习的理解

    =============在网上看到关于一篇ML的文章,很不错,转载过来共勉=============算算时间,从开始到现在,做机器学习算法也将近八个月了。虽然还没有达到融会贯通的地步,但至少在熟悉了...

    2015-02-01 09:08
    1432
  • 支持向量机SVM整理

    支持向量机在解决小样本、非线性及高维模式识别问题中表现出了许多特有的优势,针对多类分类问题的经典SVM 算法主要有一对一方法(1-vs-1),一对多方法(1-vs-all.线性可分问题SVM 是从线性...

    2015-01-12 16:47
    2263
  • 关于Netflix Prize的总结

    矩阵分解技术和模型组合方法可能是与Netflix Prize有关最多被讨论的算法。似乎基于矩阵分解的模型是最精确,并想将这些矩阵分解模型加上被时间效应和二元观点所需要提供的重要灵活性。虽然如此,已经在...

    2014-12-19 14:09
    2909
  • 机器学习(ML)中文视频教程

    本节是李政軒Cheng-Hsuan Li的关于机器学习一些算法的中文视频教程。讲得很好不错。这里非常感谢他的分享:http://www.powercam.cc/chli。也贴到这里,和大家共同学习。

    2014-05-02 01:14
    3602
img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部