博客专栏  >  综合   >  机器学习实验

机器学习实验

该专栏主要就机器学习的常用算法和如何应用进行介绍和学习

关注
14 已关注
11篇博文
  • 【scikit-learn】评估分类器性能的度量,像混淆矩阵、ROC、AUC等

     内容概要¶ 模型评估的目的及一般评估流程分类准确率的用处及其限制混淆矩阵(confusion matrix)是如何表示一个分类器的性能混淆矩阵中的度量是如何计算的通过改变分类阈值来调整分...

    2016-01-22 15:57
    11860
  • 【scikit-learn】网格搜索来进行高效的参数调优

     内容概要¶ 如何使用K折交叉验证来搜索最优调节参数如何让搜索参数的流程更加高效如何一次性的搜索多个调节参数在进行真正的预测之前,如何对调节参数进行处理如何削减该过程的计算代价 ...

    2016-01-22 15:56
    10018
  • 【scikit-learn】交叉验证及其用于参数选择、模型选择、特征选择的例子

     内容概要¶ 训练集/测试集分割用于模型验证的缺点K折交叉验证是如何克服之前的不足交叉验证如何用于选择调节参数、选择模型、选择特征改善交叉验证 1. 模型验证回顾¶ 进...

    2016-01-22 15:54
    16426
  • 【scikit-learn】scikit-learn的线性回归模型

    内容概要 如何使用pandas读入数据如何使用seaborn进行数据的可视化scikit-learn的线性回归模型和使用方法线性回归模型的评估测度特征选择的方法 作为有监督学习,分类...

    2015-06-03 09:21
    7745
  • 【scikit-learn】如何进行模型参数的选择

    内容概要 这一节我们介绍以下几个内容: 我们该怎样选择模型用于监督学习任务?我们该如何选择调整得到最好的模型参数?我们该如何对测试数据进行预测估计? 1. 使用整个数据集进行训练和...

    2015-05-29 18:54
    3559
  • 【机器学习实验】使用朴素贝叶斯进行文本的分类

    引言朴素贝叶斯由贝叶斯定理延伸而来的简单而强大的概率模型,它根据每个特征的概率确定一个对象属于某一类别的概率。该方法基于一个假设,所有特征需要相互独立,即任一特征的值和其他特征的值没有关联关系。 虽...

    2015-05-03 23:34
    5491
  • 【Kaggle】用随机森林分类算法解决Biologial Response问题

    Kaggle搞起来Kaggle比赛多依靠机器来自动处理,机器学习几乎是必须要的技能。开始搞Kaggle需要的机器学习技能并不深入,只是需要对于机器学习的常见几个方法有基本了解即可,比如说对于一个问题,...

    2015-04-19 10:32
    2460
  • 【机器学习实验】scikit-learn的主要模块和基本使用

    引言对于一些开始搞机器学习算法有害怕下手的小朋友,该如何快速入门,这让人挺挣扎的。 在从事数据科学的人中,最常用的工具就是R和Python了,每个工具都有其利弊,但是Python在各方面都相对胜出一...

    2015-04-19 10:36
    5670
  • 【机器学习实验】概率编程及贝叶斯方法

    引言贝叶斯方法是天生用来做推断的方法,然而它常隐藏在课本的数学分析的背后。 随着近年来贝叶斯方法在机器学习竞赛中成功应用,其重要性又引起了学习者的兴趣,但是其难点在于贝叶斯数学和概率编程之间的衔接。...

    2015-03-25 21:01
    5997
  • 【机器学习实验】学习Python来分类现实世界的数据

    引入一个机器可以根据照片来辨别鲜花的品种吗?在机器学习角度,这其实是一个分类问题,即机器根据不同品种鲜花的数据进行学习,使其可以对未标记的测试图片数据进行分类。 这一小节,我们还是从scikit-l...

    2015-03-12 16:44
    1901
  • 【机器学习实验】用Python进行机器学习实验

    概要本文是用Python编程语言来进行机器学习小实验的第一篇。主要内容如下: 读入数据并清洗数据 探索理解输入数据的特点 分析如何为学习算法呈现数据 选择正确的模型和学习算法 ...

    2015-03-12 16:42
    2747

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部