博客专栏  >  综合   >  线性代数

线性代数

对MIT线性代数公开课的笔记

关注
8 已关注
12篇博文
  • 【线性代数】最小二乘与投影矩阵

    前一篇文章《正交投影》中我们讲述了正交投影,现在我们来从正交投影的角度来看看我们熟悉的最小二乘法。我记得最早知道最小二乘法是在大一上高数课的时候,我们首先回顾一下什么是最小二乘法。 1、最小二乘法  ...

    2014-12-05 12:31
    2653
  • 【线性代数】正交投影

    我们在初中就应该学过投影,那么什么是投影呢?形象点说,就是将你需要投影的东西上的每一点向你要投影的平面作垂线,垂线与平面的交点的集合就是你的投影。注意这里我们的投影是向量的投影,几何的投影(并不一定是...

    2014-11-16 18:07
    6703
  • 【线性代数】正交向量与正交子空间

    在前面文章《矩阵的四个基本子空间》中提到:         一个秩为r,m*n的矩阵A中,其行空间和列空间的维数为r,零空间和左零空间的维数分别为n-r,m-r,并且有行空间与零空间正交,列空间与左...

    2014-11-16 11:51
    2614
  • 【线性代数】图与网络

    前面的关于线性代数的文章都是从数学的角度来讲解的,本文将换个角度来讲解问题。导师时常告诉我,凡事都要想想它的物理或实际意义,需要透过现象看本质,这样就能更加深刻的理解,这样就可以看看线性代数有什么实际...

    2014-11-13 15:56
    1513
  • 【线性代数】矩阵的四个基本子空间

    矩阵的四个基本子空间 1、零空间     矩阵A的零空间就Ax=0的解的集合。假设矩阵的秩为r,矩阵为m*n的矩阵,则零空间的维数为n-r。因为秩为r,则自由变量的个数为n-r,有几个自由变量,零...

    2014-11-10 11:11
    4750
  • 【线性代数】线性相关性、基和维数

    一、线性相关性       什么情况下,向量X1,X2,……,Xn是线性无关的?       答:当向量X1,X2,……,Xn的线性组合(线性组合时系数不能全为0)不为零向量时,它们是线性无关的...

    2014-11-09 14:29
    1400
  • 【线性代数】线性方程组的求解

    上一篇文章讲述了Ax=0的解和矩阵A的零空间,这里我们讨论Ax=b的解以及矩阵A的列空间。 Ax=0是肯定有解的,因为总存在x为全零向量,使得方程组成立。而Ax=b是不一定有解的,我们需要高斯消元来确...

    2014-11-08 15:16
    1743
  • 【线性代数】矩阵的零空间

    矩阵A的零空间就Ax=0的解的集合。 零空间的求法:对矩阵A进行消元求得主变量和自由变量;给自由变量赋值得到特解;对特解进行线性组合得到零空间。 假设矩阵如下: 对矩阵A进行高斯消元得到上三角矩阵...

    2014-10-13 09:07
    4879
  • 【线性代数】向量空间

    1、对称矩阵      假设有一矩阵A,其中Aij=Aji,则称这个矩阵为对称矩阵。 对称矩阵有如下性质: 也就是说:1、一个对称矩阵的转置和其逆是相等的;2、一个对称矩阵可以由一个矩阵...

    2014-10-04 19:54
    1392
  • 【线性代数】矩阵的乘法与求逆

    一、矩阵乘法的五种表示方法         1、一般形式 2、矩阵与列向量相乘 3、矩阵与行向量相乘 4、矩阵分块相乘 二、矩阵的逆 对于方阵,左逆=右逆 ...

    2014-09-17 10:51
    2499
  • 【线性代数】矩阵消元-高斯消元法

    一、高斯消元法        能使用消元法的情况:每次消元过程中,对角线元素始终不能为0,即矩阵可逆         我们一般利用高斯消元法进行矩阵的消元。下面我们通过举例说明: 如果按照我...

    2014-09-12 15:33
    4037
  • 【线性代数】方程组的几何解释

    一、二维情况 1、给出如下的二元一次方程组:

    2014-09-10 20:27
    1790

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部