博客专栏  >  综合   >  模式识别

模式识别

发布各种模式识别学习中的心得体会。 兼顾统计模式识别、结构模式识别。

关注
6 已关注
10篇博文
  • 隐马尔科夫模型(HMM)及其实现

    马尔科夫模型 马尔科夫模型是单重随机过程,是一个2元组:(S,A)。 其中S是状态集合,A是状态转移矩阵。 只用状态转移来描述随机过程。   马尔科夫模型的2个假设 有限历史性假设:t+l时刻系统状态...

    2014-08-27 10:01
    3216
  • 贝叶斯决策理论(一)

    \[P\left( {{\omega _i}\left| X \right.} \right)\]

    2014-04-16 22:34
    1784
  • 贝叶斯决策理论(二)

    基于最小风险的贝叶斯决策

    2014-04-25 23:20
    1672
  • 贝叶斯决策理论(三)

    本节结合上2节内容介绍正态分布的贝叶斯分类器。 首先介绍多元正态分布的数学基础。 密度函数

    2014-04-26 17:18
    1922
  • 特征选择(一)-维数问题与类内距离

    什么是特征选择? 简单说,特征选择就是降维。   特征选择的任务 就是要从n维向量中选取m个特征,把原向量降维成为一个m维向量。但是降维必须保证类别的可分离性或者说分类器的性能下降不多。   注意降维...

    2014-05-08 23:26
    3640
  • 特征选择(二)-聚类变换

    上一讲已经给出了类内距离的概念。 针对这个概念,有人从完全不同的两个角度给出了方法。 这就是聚类变换与K-L变换。本章介绍聚类变换。   降维到底是在干什么? 各个特征(各个分量)对分类来说...

    2014-05-10 22:06
    2186
  • 特征选择(三)-K-L变换

    上一讲说到,各个特征(各个分量)对分类来说,其重要性当然是不同的。 舍去不重要的分量,这就是降维。   聚类变换认为:重要的分量就是能让变换后类内距离小的分量。 类内距离小,意味着抱团抱得紧。   但...

    2014-05-11 07:37
    7573
  • 特征选择(四)-分散度

    度量类别可分离性的量主要有: 欧氏距离(正态分布,协方差相等,且为单位阵) 是最简单的一种描述方法。它把两个类别中心之间的欧式距离作为两个不同类别间不相似性的度量。 马氏(Mahalanobis)距离...

    2014-05-11 23:59
    2580
  • 句法模式识别(一)-串文法

    前面介绍的所有思想都属于统计模式识别,然而统计模式识别存在2个问题: 1.有的模式结构很复杂,不能用一个矢量来表示。 2.有的模式识别任务中,我们更关心如何描述它的结构特征。   因此需要另外一种模式...

    2014-05-16 10:53
    2614
  • 句法模式识别(二)-正规文法、上下文无关文法

    正规文法的特性 1.所有长度有限的语言都是正规的。 2.用正规文法当然能产生无限长串,其中周期重复部分的长度不大于非终止符的长度。 举个例子 在此规则之下,能生成句子 其中周期重复部分为ab,这个...

    2014-05-17 23:52
    2493

UFLDL
930426

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部