博客专栏  >  编程语言   >  模式分类理论与方法

模式分类理论与方法

模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

关注
12 已关注
11篇博文
  • 模式识别:分类回归决策树CART的研究与实现

    本实验的目的是学习和掌握分类回归树(CART)算法。CART提供一种通用的树生长框架,它可以实例化为各种各样不同的判定树。CART算法采用一种二分递归分割的技术,将当前的样本集分为两个子样本集,使得生...

    2015-06-19 19:50
    6314
  • 模式识别:k-均值聚类算法的研究与实现

    本实验的目的是学习和掌握k-均值聚类算法。k-均值算法是一种经典的无监督聚类和学习算法,它属于迭代优化算法的范畴。本实验在MATLAB平台上,编程实现了k-均值聚类算法,并使用20组三维数据进行测试,...

    2015-06-10 20:41
    5997
  • 模式识别:模拟退火算法的设计与实现

    本节的目的是记录以下学习和掌握模拟退火(Simulated Annealing,简称SA算法)过程。模拟退火算法是一种通用概率算法,用来在一个大的搜寻空间内寻找命题的最优解。这里分别使用随机模拟退火算...

    2015-06-05 02:18
    7923
  • 模式识别:三层BP神经网络的设计与实现

    本文的目的是学习和掌握BP神经网络的原理及其学习算法。在MATLAB平台上编程构造一个3-3-1型的singmoid人工神经网络,并使用随机反向传播算法和成批反向传播算法来训练这个网络,这里设置不同的...

    2015-05-29 01:49
    13188
  • 模式识别:非参数估计法之Parzen窗估计和k最近邻估计

    本实验的目的是学习Parzen窗估计和k最近邻估计方法。在之前的模式识别研究中,我们假设概率密度函数的参数形式已知,即判别函数J(.)的参数是已知的。本节使用非参数化的方法来处理任意形式的概率分布而不...

    2015-04-25 21:22
    9023
  • 模式识别:PCA主分量分析与Fisher线性判别分析

    本实验的目的是学习和掌握PCA主分量分析方法和Fisher线性判别方法。首先了解PCA主分量分析方法的基本概念,理解利用PCA 分析可以对数据集合在特征空间进行平移和旋转。实验的第二部分是学习和掌握F...

    2015-04-23 19:02
    7674
  • 模式识别:感知器的实现

    在之前的模式识别研究中,判别函数J(.)的参数是已知的,即假设概率密度函数的参数形式已知。本节不考虑概率密度函数的确切形式,使用非参数化的方法来求解判别函数。由于线性判别函数具有许多优良的特性,因此这...

    2015-04-23 09:40
    12361
  • 模式识别:最大似然估计与贝叶斯估计方法

    之前学习了贝叶斯分类器的构造和使用,其中核心的部分是得到事件的先验概率并计算出后验概率 ,而事实上在实际使用中,很多时候无法得到这些完整的信息,因此我们需要使用另外一个重要的工具——参数估计。参数估计...

    2015-04-06 10:25
    6861
  • 模式识别:分类器的性能评价

    最近开始了模式识别的学习,对模式和模式类的概念有一个基本的了解,并使用MATLAB实现一些模式类的生成。而接下来如何对这些模式进行分类成为了学习的第二个重点。我们都知道,一个典型的模式识别系统是由特征...

    2015-03-24 23:55
    3740
  • MATLAB实现贝叶斯分类器

    贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化,它遵...

    2015-03-30 17:27
    11616
  • 模式识别:利用MATLAB生成模式类

    在开始模式识别的学习之前,需要对模式和模式类的概念有一个了解,这里使用MATLAB实现一些模式类的生成。

    2015-03-13 23:54
    4159
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部