博客专栏  >  编程语言   >  机器学习与数据挖掘系列

机器学习与数据挖掘系列

本专栏是较为全面地介绍了机器学习的基本概念,并讨论了数据挖掘和知识发现中的有关问题及多策略学习方法,并且提供了一个公开的数据挖掘工作平台Weka的操作实现;同时收集众多不同领域中数据挖掘的实际案例,以此来说明数据挖掘的具体解决方法,以期为广大读者提供一个更为广阔的数据挖掘的平台。

关注
15 已关注
15篇博文
  • 数据挖掘十大算法--Apriori算法

    一、Apriori 算法概述 Apriori 算法是一种最有影响力的挖掘布尔关联规则的频繁项集的 算法,它是由Rakesh Agrawal 和RamakrishnanSkrikant 提出的。它使用...

    2014-04-30 20:32
    5193
  • 机器学习中的有监督学习,无监督学习,半监督学习

    在机器学习(Machine learning)领域,主要有三类不同的学习方法: 监督学习(Supervised learning)、 非监督学习(Unsupervised learning)、 半监督...

    2014-04-29 19:57
    13225
  • 数据挖掘十大算法--K-均值聚类算法

    一、相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能...

    2014-04-24 12:16
    5064
  • 数据挖掘十大经典算法(详解)

    数据挖掘十大经典算法

    2014-04-23 16:51
    11010
  • 数据挖掘十大算法--K近邻算法

    k-近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。 一、基于实例的学习。 1、已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法...

    2014-04-17 17:33
    9668
  • K近邻算法基础:KD树的操作

    Kd-树概念 Kd-树 其实是K-dimension tree的缩写,是对数据点在k维空间中划分的一种数据结构。其实,Kd-树是一种平衡二叉树。 举一示例: 假设有六个二维数据点 = {(2,3),(...

    2014-04-17 15:47
    3482
  • 数据挖掘十大算法----EM算法(最大期望算法)

    概念 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。...

    2014-04-14 20:48
    12466
  • 贝叶斯学习举例--学习分类文本

    “我感兴趣的电子新闻稿”或“讨论机器学习的万维网页”。在这两种情况下,如果计算机可以精确地学习到目标概念,就可从大量在线文本文档中自动过滤出最相关的文档显示给读者。 这里描述了一个基于朴素贝叶斯分类器...

    2014-04-03 20:19
    1484
  • 朴素贝叶斯分类器

    贝叶斯定理 贝叶斯定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:       表...

    2014-04-03 19:26
    2779
  • 贝叶斯学习--极大后验假设学习

    我们假定学习器考虑的是定义在实例空间X上的有限的假设空间H,任务是学习某个目标概念c:X→{0,1}。如通常那样,假定给予学习器某训练样例序列〈〈x1,d1,〉…〈xm,dm〉〉,其中xi为X中的某实...

    2014-04-03 17:13
    1424
  • 贝叶斯学习--极大后验概率假设和极大似然假设

    在机器学习中,通常我们感兴趣的是在给定训练数据D时,确定假设空间H中的最佳假设。 所谓最佳假设,一种办法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识条件下的最可能(most proba...

    2014-04-03 16:43
    2209
  • 人工神经网络关键核心知识点

    神经网络里面主要就是单层神经网络学习和多层神经网络学习,涉及到知识点主要就是感知器,线性分割,影藏层,权重校正,误差的平方和等知识点。 感知器:是神经网络最简单的形式,单层双输入感知器的结构如下: ...

    2014-04-02 17:06
    2078
  • 数据挖掘学习笔记之人工神经网络(二)

    多层网络和反向传播算法 我们知道单个感知器仅能表示线性决策面。然而我们可以将许多的类似感知器的模型按照层次结构连接起来,这样就能表现出非线性决策的边界了,这也叫做多层感知器,重要的是怎么样学习多层感...

    2014-03-27 21:04
    3116
  • 数据挖掘学习笔记之人工神经网络(一)

    由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。 神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方...

    2014-03-27 19:14
    3547
  • 数据挖掘学习笔记--决策树C4.5

    在网上和教材上也看了有很多数据挖掘方面的很多知识,自己也学习很多,就准备把自己学习和别人分享的结合去总结下,以备以后自己回头看,看别人总还是比不上自己写点,及时有些不懂或者是没有必要。 定义:分类树(...

    2014-03-23 11:56
    3870

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部