博客专栏  >  综合   >  UFLDL

UFLDL

包含斯坦福大学UFLDL教程的全部练习个人解答,以对于深度学习(Deep Learning)的诸多个人理解。

关注
28 已关注
9篇博文
  • 卷积特征提取与池化(Pooling)——处理大型图像

    在之前的章节中,我们已经很好地解决了手写体识别问题(维数为28*28)。但如果是更大的图像(维数为96*96)呢?如果你还是要学习400个特征,那么网络权重参数就有400*96*96即近400万个。 ...

    2014-08-18 16:49
    5236
  • 线性解码器——解决数据缩放问题

    稀疏自编码器效果不错,但是有个固有缺陷:必须对输入数据的范围缩放到(0,1)。   设想一个图像如果不经预处理,直接把大于1的值输入稀疏自编码器,那么被sigmoid一下,就成了(0,1)的范围了,再...

    2014-08-16 13:49
    1926
  • 从自我学习到深层网络——建立你的第1个深度网络分类器

    自我学习就是稀疏编码器串联一个Softmax分类器,上一节看到,训练400次,准确率为98.2% 在此基础上,我们可以搭建我们的第一个深度网络:栈式自编码(2层)+Softmax分类器   简单地说,...

    2014-08-16 11:32
    2410
  • 自我学习(Self-Taught Learning)

    自我学习就是把稀疏自编码器与Softmax回归分类器串联起来。 稀疏编码器是用来无监督学习的,使用无标签数据。 Softmax回归分类器是有监督学习,使用标签数据。   实际生活中,我们能轻松获得大...

    2014-08-13 12:36
    2328
  • Softmax回归——识别MINST数据库

    Softmax回归就是推广版本的逻辑回归。 只不过逻辑回归是个2分类问题,而Softmax是多分类问题,仅此而已。 Softmax回归在2分类情况下就蜕化成了逻辑回归。 逻辑回归的代价函数 考虑到...

    2014-08-12 16:30
    3187
  • 主成分分析与白化预处理

    上一节介绍了主成分分析应用于2维数据。现在使用高维的图像数据来试试效果。 原始图像如图1所示。 图1 每个图片都是12*12的小patch,原始数据是一个144*10000的矩阵x。 在使用了PC...

    2014-08-11 19:40
    1846
  • 主成分分析(PCA)——以2维图像为例

    这一节不论是思想还是实现都比较容易。 主成分分析(PCA)就是模式识别里面说的K-L变换,思想是完全相同的。 详情可见我的博文:特征选择(三)-K-L变换 这里简单介绍几个概念。顺便贴出代码和效...

    2014-08-11 15:20
    2921
  • 矢量化编程——以MNIST为例

    矢量化编程就是用矢量运算取代所有的显式for循环。 上一节所用的是512*512*10的数据集很小,我们取的patch很小(8*8),学来的特征很少(25),而我又注释掉了梯度校验(偷懒),所以程序...

    2014-08-11 10:05
    2624
  • 稀疏自编码器及其实现——如何搞基

    自编码器是什么? 自编码器本身就是一种BP神经网络。它是一种无监督学习算法。 我们都知道神经网络可以从任意精度逼近任意函数,这里我们让神经网络目标值等于输出值x,也就是模拟一个恒等函数: ...

    2014-08-09 10:57
    6202

模式识别
1027751

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部