关闭

BZOJ2214: [Poi2011]Shift

标签: BZOJPOI构造
313人阅读 评论(0) 收藏 举报
分类:

题目大意:

有一个1..n的排列,有两种操作:
(a) 将最后一个数移到最前面
(b) 把第三个数移到最前面
我们将连续进行k次同一个操作称为“一块操作”,表示为ka或kb。
找到一个操作序列使得进行这些操作后,排列变为1,2,3,...,n。


什么狗题!网上就搜到了一个一句话题解差评!!

大概思想就是按顺序一个一个的确定位置,假设前i-1个位置都已经确定好了,现在要把第i号放在他们后面,我们可以先把i弄到最前面,然后只要i-1不在最后两个,那就一直a两下b一下,这样就能保持i在最上面。当i-1到了最后一个位置时,那就说明已经放好了,否则就a一下b两下。

当还剩最后两个空时,需要特判一下,n为偶数无论怎样都有解,n为奇数时假设最后两个不是有序的就无解

最后是输出,超级烦,需要注意数字不能小于1不能大于等于n,相邻两块必须操作不同


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 2010
using namespace std;
int a[N];
int sit[N],PY;
int ans[N*N*2],cnt;
char K[N*N*2];
int n;
void NO(){puts("NIE DA SIE");exit(0);}
int cal(int x,int c)
{
	c%=n;
	if(x+c<=n&&x+c>0) return x+c;
	if(x+c<=0) return x+c+n;
	return x+c-n;
}
int now(int x)
{
	return cal(sit[x],PY);
}
void A(int x)
{
	cnt++;
	ans[cnt]=x;
	K[cnt]='a';
	PY+=x;
}
void B(int x)
{
	cnt++;
	ans[cnt]=x;
	K[cnt]='b';
	int p1,p2,p3;
	p1=cal(1,-PY);
	p2=cal(2,-PY);
	p3=cal(3,-PY);
	if(x==1)
	{
		int tmp=a[p1];
		a[p1]=a[p3];
		a[p3]=a[p2];
		a[p2]=tmp;
	}
	else if(x==2)
	{
		int tmp=a[p1];
		a[p1]=a[p2];
		a[p2]=a[p3];
		a[p3]=tmp;
	}
	sit[a[p1]]=p1;
	sit[a[p2]]=p2;
	sit[a[p3]]=p3;
}
void doit()
{
	while(cal(sit[n-1],1)!=sit[n])
	{
		if(now(n-1)!=1)
		A(n+1-now(n-1));
		B(2);
	}
}
void final()
{
	if(now(1)!=1)
	A(n+1-now(1));
}
int cans[N*N],ccnt;
char cK[N*N];
void output()
{
	int i,j;
	for(i=1;i<=cnt;i++)
	{
		if(K[i]==cK[ccnt]) cans[ccnt]+=ans[i];
		else
		{
			if(cK[ccnt]=='a')
			{
				cans[ccnt]%=n;
				if(ccnt!=0&&cans[ccnt]==0)
				{
					ccnt--;
					if(cK[ccnt]=='b')
					{
						cans[ccnt]+=ans[i];
						continue;
					}
				}
			}
			else
			{
				cans[ccnt]%=3;
				if(ccnt!=0&&cans[ccnt]==0)
				{
					ccnt--;
					if(cK[ccnt]=='a')
					{
						cans[ccnt]+=ans[i];
						continue;
					}
				}
			}
			ccnt++;
			cK[ccnt]=K[i];
			cans[ccnt]=ans[i];
		}
	}
	if((cans[ccnt]%n==0&&cK[ccnt]=='a')||(cans[ccnt]%3==0&&cK[ccnt]=='b')) ccnt--;
	printf("%d\n",ccnt);
	for(i=1;i<=ccnt;i++)
	printf("%d%c ",cans[i],cK[i]);
}
int main()
{
	scanf("%d",&n);
	int i,j,x,y;
	for(i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		sit[a[i]]=i;
	}
	for(i=2;i<=n-2;i++)
	{
		if(sit[i]==cal(sit[1],i-1)) continue;
		if(now(i)!=1) A(n+1-now(i));
		while(now(i-1)<n-1)
		{
			A(2);
			B(1);
		}
		if(now(i-1)==n-1)
		{
			A(1);
			B(2);
		}
	}
	if(n%2==1&&n!=1&&cal(sit[1],n-2)!=sit[n-1]) NO();
	if(cal(sit[1],n-2)!=sit[n-1]) doit();
	final();
	output();
}


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

DOS批处理命令之shift命令

DOS批处理命令之shift命令
  • dadaxiaoxiaode
  • dadaxiaoxiaode
  • 2016-08-13 15:40
  • 2064

Mean-shift算法的直观理解

Mean-shift算法的直观理解 0 前言     暑假的时候参加移动计算竞赛打了下酱油,接触到了Mean-shift算法,用于做目标跟踪。在那段时间也在网上查阅了不少关于这个算法的资料...
  • u014510375
  • u014510375
  • 2015-01-09 18:34
  • 2937

Eclipse快捷键大全,导包快捷键:ctrl+Shift+O

Ctrl+1 快速修复(最经典的快捷键,就不用多说了) Ctrl+D: 删除当前行  Ctrl+Alt+↓ 复制当前行到下一行(复制增加) Ctrl+Alt+↑ 复制当前行到上一行(复制增加) ...
  • bianjing40
  • bianjing40
  • 2017-01-10 12:21
  • 1651

【BZOJ】【P2212&P3702】【Poi2011】【Tree Rotations】【二叉树】【题解】【启发式合并】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2212
  • u012732945
  • u012732945
  • 2014-10-27 10:37
  • 736

BZOJ 2280 Poi2011 Plot 二分答案+随机增量法

题目大意:给定n个点,要求分成m段,使每段最小覆盖圆半径的最大值最小 二分答案,然后验证的时候把点一个个塞进最小覆盖圆中,若半径超了就分成一块…… 等等你在跟我说不随机化的随机增量法? 好吧 ...
  • PoPoQQQ
  • PoPoQQQ
  • 2015-04-17 19:14
  • 1581

BZOJ 2216: [Poi2011]Lightning Conductor

题意:已知一个长度为n的序列a1,a2,…,an。 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j))p=max(aj+s...
  • MatouKariya
  • MatouKariya
  • 2015-05-22 10:59
  • 431

BZOJ 2527 [Poi2011]Meteors [整体二分+线段树]

BZOJ 2527 [Poi2011]Meteors [整体二分+线段树]
  • ACTerminate
  • ACTerminate
  • 2017-07-11 20:06
  • 196

[BZOJ2527][Poi2011][整体二分][树状数组]Meteors

整体二分区间[l,r]为当前处理修改操作区间,即陨石雨的区间,[L,R]为询问操作区间,即每个国家,那么执行[l,r]区间的修改,对于[L,R]中的每个国家,用树状数组查询收集到的陨石,如果大于希望获...
  • Coldef
  • Coldef
  • 2017-02-17 22:42
  • 181

【bzoj 2276】[Poi2011]Temperature(单调队列)

断虹霁雨,秋空煜煜
  • reverie_mjp
  • reverie_mjp
  • 2016-11-11 10:50
  • 163

BZOJ 2525 [Poi2011]Dynamite 二分+树形贪心

BZOJ 2525 [Poi2011]Dynamite 二分+树形贪心
  • wzq_QwQ
  • wzq_QwQ
  • 2015-10-03 22:48
  • 1435
    个人资料
    • 访问:92090次
    • 积分:2427
    • 等级:
    • 排名:第17618名
    • 原创:156篇
    • 转载:3篇
    • 译文:0篇
    • 评论:27条