在ncnn上把玩mobileNet

ncnn是腾讯优图最近开源的适合移动端的深度学习框架。mobileNet是谷歌在2017年4月份发表的论文MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications中提出的网络。...
阅读(321) 评论(0)

岭回归原理及代码实现

岭回归(英文名:ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。...
阅读(1751) 评论(2)

表情识别数据集整理

国内外表情识别研究领域的相关数据集整理...
阅读(5320) 评论(2)

Andrew Ng机器学习-Linear Regression with one variable

这一讲主要是针对单变量的线性回归来讲两个基本概念:损失函数(cost function)、梯度下降(Gradient Descent)1 Cost Function 定义如下: 左图为cost function的定义。右边为只有一个参数的h(x)的情况。 cost function的作用的评价一个回归函数好坏用的,具体来说就是评价回归函数h(x)的参数选对没。 这里J(theta)也可以...
阅读(582) 评论(0)

Weka入门

最近做对比实验要用到weka,于是开始上网找相关的资料,网上大部分博客都在讲WEKA 建议的加载数据的格式 Attribute-Relation File Format (ARFF),看着感觉很高大上的样子。其实在weka中可以直接使用csv文件的,使用也非常方便。下面简单说说我的做法PS:我的对比实验室是要用WEKA来做一个线性回归(Linear Regression),训练数据和标签都有了,数据...
阅读(712) 评论(0)

ROC曲线详解

ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线上,最靠近...
阅读(2134) 评论(0)

奇异值分解(SVD)

最近不小心接触到了SVD,然后认真看下去之后发现这东西真的挺强大的,把一个推荐问题转化为纯数学矩阵问题,看了一些博客,把一个写个比较具体的博文引入进来,给自己看的,所以把觉得没必要的就去掉了,博文下面附原始博客地址。        一、基础知识 1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数 2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵 3. 单位矩阵:如果对角矩阵中...
阅读(812) 评论(0)

经典的机器学习方面的开源库

今天给大家介绍一下经典的开源机器学习软件: 编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是python(numpy+scipy+matplotlib)和C/C++,这样组合既可搞研究,也可搞商业开发,易用性不比matlab差,功能组合更为强大,个人认为,当然R和java也不错. 1.机器学习开源软件网(收录了各种机器学习的各种编程语言学术与商业的开源...
阅读(947) 评论(0)

表情识别的流程简介

对于计算机来说,要识别出不同的面部表情是不容易的,这是因为:首先,表情是一种很复杂的肌肉运动,每种表情是几十块面部肌肉共同运动后产生的结果,因此很难够用一个准确的数学模型来描述这些复杂的肌肉运动。其次,面部表情的变化主要表现为面部特征点上的运动,由于计算机视觉等诸多的技术限制,计算机不能够精确地定位出这些特征点的位置,因而就无法判断出面部肌肉的运动状态。此外,表情的表现形式因人而异,同一种表情在不...
阅读(1315) 评论(0)

机器学习中特征降维和特征选择的区别

在用machine learning是,为了tia...
阅读(2557) 评论(7)

回归分析中的评价方法

回归(Regression)不同于分类问题,在回归方法中我们预测一系列连续的值,在预测完后有个问题是如何评价预测的结果好坏,关于这个问题目前学术界也没有统一的标准。下面是我在论文中的看到的一些常用方法,希望对有缘人有用。...
阅读(5945) 评论(0)

OpenCV中的SVM参数优化

SVM(支持向量机)是机器学习算法里用得最多的算法。SVM最常用的是用于分类,不过SVM也可以用于回归,我的实验中就是用SVM来实现SVR(支持向量回归)。对于功能这么强的算法,opencv中自然也是集成好了,我们可以直接调用。 网上讲opencv中SVM使用的文章有很多,但讲SVM参数优化的文章却很少。所以在这里不重点讲怎么使用SVM,而是谈谈怎样通过opencv自带的库优化SVM中的参数。...
阅读(6318) 评论(13)

PCA实现步骤及其与opencv中PCA实现方式的对比

PCA,也就是PrincipalComponents Analysis,主成份分析,是个很优秀的算法,按照书上的说法:...
阅读(2734) 评论(13)
    个人资料
    • 访问:131933次
    • 积分:2190
    • 等级:
    • 排名:第17966名
    • 原创:81篇
    • 转载:6篇
    • 译文:0篇
    • 评论:57条
    文章分类
    最新评论