hdu4497 GCD and LCM

原创 2015年07月10日 17:30:49

GCD and LCM

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1460    Accepted Submission(s): 653


Problem Description
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
 

Input
First line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
 

Output
For each test case, print one line with the number of solutions satisfying the conditions above.
 

Sample Input
2 6 72 7 33
 

Sample Output
72 0
 
  给出gcd和lcm,求出满足条件的(x,y,z)这样的三元组有多少个。
  把这些数分解因子,gcd因子个数是这些数里面拥有这个因子最少的数的因子个数,gcd因子个数是这些数里面拥有这个因子最多的数的因子个数。所以这里面先用lcm除以gcd,把除了之后得到的数分解因子,对于每个因子,假设个数是m,x,y,z里面一定有一个数的这个因子个数是m,一个数因子个数为m,剩下一个在0到n之间。因此对于这个因子,三个数的组合有(m-1)*6+6种。
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long LL;

const int MAXN=300010;
const int SIZE=4096;
const int INF=0x3f3f3f3f;

int T;
LL G,L;

int main(){
    freopen("in.txt","r",stdin);
    scanf("%d",&T);
    while(T--){
        scanf("%lld%lld",&G,&L);
        if(L%G!=0||L<G){
            printf("0\n");
            continue;
        }
        LL n=L/G;
        LL sq=sqrt(n)+1;
        int ans=1;
        for(LL i=2;i<=n&&i<=sq;i++){
            int m=0;
            while(n%i==0){
                n/=i;
                m++;
            }
            if(m>0) ans*=(m-1)*6+6;
        }
        if(n>1) ans*=6;
        printf("%d\n",ans);
    }
    return 0;
}



相关文章推荐

hdu 4497 GCD and LCM(数学知识很重要)

GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Tot...

HDU - 4497 - GCD and LCM (线性筛素数 + 计数)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497题目大意:给出一个GCD和一个LCM,求出所有满足条件的三个数的组合。题解:一个大神写的分析,贼牛...

hdu4497 GCD and LCM 容斥原理

题意:三个数x,y,z,它们的最大公约数是g,最小公倍数是l。求有多少组x,y,z满足要求。 题解:首先想到gcd(x,y,z)=g,那么gcd(x/g,y/g,z/g)=1,lcm(x,y,z)=l...

hdu 4497 GCD and LCM(数论,排列组合)

GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Tota...
  • acm_cxq
  • acm_cxq
  • 2016年06月09日 23:03
  • 321

hdu4497——GCD and LCM(数论&容斥原理or排列组合)

GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T...

hdu 4497 GCD and LCM (素数分解+组合数学)

GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T...

hdu 4497 GCD and LCM(唯一分解+容斥原理)

GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total...

HDU 4497 GCD and LCM(唯一分解定理+排列组合)

#include #include #include #include using namespace std; int main(){ int t; scanf("%d",&t); ...

hdu 4497 GCD and LCM 数论 素数分解

题意:每个案例给你两个数G和L。然后找有多少不同的(x,y,z) 的gcd是G,且lcm是L。 做法:分解素数G,L。 首先 L%G!=0 那肯定是输出0的。 第一个案例 6 72 分解后 ...

hdu 4497 GCD and LCM (唯一分解定理 + 计数)

GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu4497 GCD and LCM
举报原因:
原因补充:

(最多只允许输入30个字)