关闭

HDU-5713-K个联通块 状压dp 计数技巧 去重技巧

标签: 百度之星2016hdu-5713
464人阅读 评论(0) 收藏 举报
分类:
  • 题意

    给一张无重边(可能有自环),求有多少种方案使得删除一些边后有K个连通块。

  • 题解

    删边等于添边。设dp[s][i]表示状态为s的子集有k个连通块的方案数,则有dp[S0][i]=dp[S2][i1]dp[S1][1]s1表示s0的包含最后一个1的子集,s2s1对于s0的补集,而dp[s][1]可以通过先计算所有的边选或不选(即所有方案数),再减去i=2dp[s][i]来计算。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <bitset>
//#pragma comment(linker, "/STACK:1024000000,1024000000")

using namespace std;

#define ll long long
#define SZ(x) ((int)(x).size()) 
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i) 
#define REP(i,a,n) for ( int i=a; i<int(n); i++ )
#define FOR(i,a,n) for ( int i=n-1; i>= int(a);i-- )
#define lson rt<<1, L, m
#define rson rt<<1|1, m, R
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define mp(x, y) make_pair(x, y)
#define pb(x) push_back(x)
#define fi first
#define se second
#define CLR(a, b) memset(a, b, sizeof(a))
#define Max(a, b) a = max(a, b)
#define Min(a, b) a = min(a, b)
const int maxn = 17;
const int mod = 1e9 + 9;
int T;
int kase;
int n, m, k;
int g[maxn][maxn];
int cnt[1 << maxn];
ll dp[1 << maxn][maxn];
void ini(){
    CLR(g, 0);
    CLR(dp, 0);
    CLR(cnt, 0);
}
ll solve(){
    int end = 1 << n;
    REP(S0, 1, end){
        dp[S0][1] = 1;
        for(int i = 0; i < n; i ++){
            if((S0 >> i) & 1){
                cnt[S0] ++;
                for(int j = i; j < n; j ++){
                    if((S0 >> j) & 1){
                        if(g[i][j]){
                            dp[S0][1] = dp[S0][1] * 2 % mod;
                        }
                    }
                }
            }
        }
    }
    REP(S0, 1, end){
        int s = S0 & -S0;
        ll sum = 0;
        FOR(i, 2, cnt[S0] + 1){
            for(int S1 = S0; S1; S1 = (S1 - 1) & S0){
                if((S1 & s) == 0) continue;
                int S2 = S1 ^ S0;
                dp[S0][i] += (dp[S2][i - 1] * dp[S1][1]) % mod;
                dp[S0][i] %= mod;
            }
            sum += dp[S0][i];
            sum %= mod;
        }
        dp[S0][1] = ((dp[S0][1] - sum) % mod + mod) % mod;
    }
    return dp[end - 1][k];
}
int main(){
#ifdef ac
    freopen("in.txt","r",stdin);
#endif
    //freopen("out.txt","w",stdout);
    scanf("%d", &T);
    while(T--){
        ini();
        scanf("%d%d%d", &n, &m, &k);
        REP(i, 0, m){
            int u, v;
            scanf("%d%d", &u, &v);
            u --, v --;
            g[u][v] = g[v][u] = 1;
        }

        printf("Case #%d:\n%lld\n", ++ kase, solve());
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:7981次
    • 积分:433
    • 等级:
    • 排名:千里之外
    • 原创:37篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章分类