【数位DP】BZOJ3780数字统计

Time Limit: 10 Sec Memory Limit: 128 MB
Description
小A正在研究一些数字统计问题。有一天他突然看到了一个这样的问题:
[L..R] 中的所有整数用 M 位二进制数表示(允许出现前导0)。现在将这些数中的每一个作如下变换:
从这个数的最低两位开始,如果这两位都是 0 ,那么X=1,否则 X=0 。现在将这两位删去,然后将 X 放在原来最低位的位置上。重复这个变换直到这个数只剩下一位为止。
例如01001的变换过程如下:
01001>0100>011>00>1
现在的问题是变换后的所有数中,值为 Y Y 0 1)的有多少个?
小A不会了,他想让你帮助他完成这个问题。
Input
输入文件包含多组测试数据。
第一行,一个整数 T ,表示测试数据的组数。
接下来的T节,每节对应一组测试数据,格式如下:
第一行,两个整数 MY
第二行,两个 M 位二进制数LR
Output
对于每组测试数据,输出一行,一个二进制数,表示该组测试数据中 [L..R] 中的所有整数变换后的值为Y的个数。这里的二进制数不允许出现前导 0
Sample Input
1
3 1
001 101
Sample Output
11
HINT
对于全部的数据, 1<=M<=200 1<=T<=50

一个很明显的数位DP…
由于运算规则的限定,只能从低位向高位递推了。
少见的从低位推向高位的数位DP…

f[i][j][k] 表示低位数起的第 i 位 按规则计算后答案为j j 0 1 k表示与 n 的大小关系(当大于等于n时, k=0 ;否则 k=1

那么递推式为
t=num[i+1] ,f[i+1][!j&&!t][k]+=f[i][j][k]
否则,f[i+1][!j&&!t][!(t>=num[i+1])]+=f[i][j][k]

由于 LR 的范围很大,需要用高精度。同时最后结果要求以二进制的形式输出,那么对高精度进行压位时,模数应该是一个 2k ,为了方便用位运算来取模,可以& 2k1

结果本弱很快写完后调了一个多小时,发现高精度不知道哪里写错了,反正位数不多,又只有加减运算,就直接遍历一遍吧…

#include <iostream>
#include <cstdio>
#include <cstring>
#define MAXN 202
using namespace std;
const int P=(1<<30)-1;

int len, y;
char l[MAXN], r[MAXN];
struct Bignum
{
    int num[8];
    Bignum(){memset(num,0,sizeof num);}
    void operator += (const Bignum &a)
    {
        for(int i=0;i<7;++i)
        {
            num[i]+=a.num[i];
            if(num[i]>P)++num[i+1], num[i]&=P;
        }
    }
    Bignum operator + (const Bignum &a)const
    {
        Bignum t=*this;
        t+=a;
        return t;
    }
    void operator -= (const Bignum &a)
    {
        for(int i=0;i<7;++i)
        {
            num[i]-=a.num[i];
            if(num[i]<0)--num[i+1], num[i]+=P+1;
        }
    }
    Bignum operator - (const Bignum &a)const
    {
        Bignum t=*this;
        t-=a;
        return t;
    }
    void put()
    {
        int i;
        for(i=201;~i;--i)if(num[i/30]&(1<<i%30))break;
        if(i<0)putchar('0');
        else for(;~i;--i)putchar(num[i/30]&(1<<i%30)?'1':'0');
        puts("");
    }
}ans, f[MAXN][2][2], one;

bool check(char num[])
{
    int k=num[1];
    for(int i=2;i<=len;++i)k=!k&&!num[i];
    return k==y;
}

Bignum cal(char num[])
{
    for(int i=1;i<=len;++i)f[i][0][0]=f[i][0][1]=f[i][1][0]=f[i][1][1]=Bignum();
    for(int i=0;i<2;++i)f[1][i][i<num[1]]+=one;
    for(int i=1;i<len;++i)
        for(int j=0;j<2;++j)
            for(int k=0;k<2;++k)
                for(int t=0;t<2;++t)
                    f[i+1][!j&&!t][t==num[i+1]?k:t<num[i+1]]+=f[i][j][k];
    return f[len][y][1];
}

int main()
{
    int cas;
    one.num[0]=1;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d%d",&len,&y);
        scanf("%s%s",l+1,r+1);
        for(int i=1;i+i<=len;++i)swap(l[i],l[len-i+1]), swap(r[i],r[len-i+1]);
        for(int i=1;i<=len;++i)l[i]-='0', r[i]-='0';
        ans=cal(r)-cal(l);
        if(check(r))ans+=one;
        //这里的cal(n)函数计算[1,n)满足条件的个数,所以说最后还有特判一下r是否满足条件
        ans.put();
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值