关闭

06-图1-列出连通集

162人阅读 评论(0) 收藏 举报
分类:

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

解题思路:首先先建立图,然后再对所建立的图进行DFS,BFS便可找到连通的边.

BFS的本质思想使用一个队列来储存图的下标.
这里的DFS和BFS都值得借鉴.
特别要注意的是BFS所用到的思想并不是递归.

#include<cstdio>

#define N 15

int G[N][N],Nv,Ne;
bool Visited[N];

void InitVisit()
{
    for(int i=0;i<N;i++)
        Visited[i] = false;
}

void DFS(int V)
{
    Visited[V] = true;
    printf("%d ",V);
    for(int i=0;i<Nv;i++)
    {
        if(!Visited[i]&&G[V][i])
            DFS(i);
    }
}

void ListComponentsWithDFS()
{
    for(int i=0;i<Nv;i++)
    {
        if(!Visited[i])
        {
            printf("{ ");
            DFS(i);
            printf("}\n");
        }
    }
}

void BFS(int V)
{
    const int MAX_SIZE = 100;
    int Queue[MAX_SIZE];
    int first = -1, last = -1;

    Queue[++last] = V;      //入队
    Visited[V] = true;
    while (first < last)    //当队不为空时
    {
        int F = Queue[++first];     //出队
        printf("%d ", F);
        for (int i = 0; i < Nv; i++)
        {
            if (G[F][i] && !Visited[i])
            {
                Queue[++last] = i;      //入队
                Visited[i] = true;
            }
        }
    }
}

void ListComponentsWithBFS()
{
    for(int i=0;i<Nv;i++)
    {
        if(!Visited[i])
        {
            printf("{ ");
            BFS(i);
            printf("}\n");
        }
    }
}

void CreateGraph()
{
    int v1,v2;

    scanf("%d %d",&Nv,&Ne);
    for(int i=0;i<Nv;i++)
    {
        for(int j=0;j<Nv;j++)
        {
            G[i][j] = 0;
        }
    }
    for(int i=0;i<Ne;i++)
    {
        scanf("%d %d",&v1,&v2);
        G[v1][v2] = 1;
        G[v2][v1] = 1;
    }
}

int main()
{
    CreateGraph();
    InitVisit();
    ListComponentsWithDFS();
    InitVisit();
    ListComponentsWithBFS();
}












0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:12813次
    • 积分:662
    • 等级:
    • 排名:千里之外
    • 原创:56篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条
    最新评论