bloom filter

翻译 2012年03月31日 10:39:34

一、什么是 Bloom filter

  Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员,这种检测只会对在集合内的数据错判,而不会对不是集合内的数据进行错判,这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率换取时间和空间。[1]

编辑本段二、Bloom filter 计算方法

  如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链表、树都是基于这种思路,当集合内元素个数的变大,我们需要的空间和时间都线性变大,检索速度也越来越慢。 Bloom filter 采用的是哈希函数的方法,将一个元素映射到一个 m 长度的阵列上的一个点,当这个点是 1 时,那么这个元素在集合内,反之则不在集合内。这个方法的缺点就是当检测的元素量很多时候可能有冲突,解决方法就是使用 k 个哈希 函数对应 k 个点,如果所有点都是 1 的话,那么元素在集合内,如果有 0 的话,元素则不再集合内。

编辑本段三、Bloom filter 特点

  Bloom filter 优点就是它的插入和查询时间都是常数,另外它查询元素却不保存元素本身,具有良好的安全性。它的缺点也是显而易见的,当插入的元素越多,错判“在集合内”的概率就越大了,另外 Bloom filter 也不能删除一个元素,因为多个元素哈希的结果可能在 Bloom filter 结构中占用的是同一个位,如果删除了一个比特位,可能会影响多个元素的检测。

编辑本段四、Bloom filter 的一个简单例子

  下面是一个简单的 Bloom filter 结构,开始时集合内没有元素
  当来了一个元素 a,进行判断,这里哈希函数有两个,计算出对应的比特位上为 0 ,即是 a 不在集合内,将 a 添加进去:
  之后的元素,要判断是不是在集合内,也是同 a 一样的方法,只有对元素哈希后对应位置上都是 1 才认为这个元素在集合内(虽然这样可能会误判):
  随着元素的插入,Bloom filter 中修改的值变多,出现误判的几率也随之变大,当新来一个元素时,满足其在集合内的条件,即所有对应位都是 1 ,这样就可能有两种情况,一是这个元素就在集合内,没有发生误判;还有一种情况就是发生误判,出现了哈希碰撞,这个元素本不在集合内。

相关文章推荐

open bloom filter

  • 2012-11-19 15:42
  • 620KB
  • 下载

算法12_海量数据处理算法—Bloom Filter

1. Bloom-Filter算法简介         Bloom-Filter,即布隆过滤器,1970年由Bloom中提出。它可以用于检索一个元素是否在一个集合中。        Blo...

bloom filter 相关论文资料

  • 2012-01-18 11:27
  • 10.21MB
  • 下载

Bloom Filter概念和原理

  • 2010-11-28 14:29
  • 416KB
  • 下载

数学之美系列二十一 - 布隆过滤器(Bloom Filter)

2007年7月3日 上午 09:35:00 发表者:Google(谷歌)研究员 吴军 在日常生活中,包括在设计计算机软件时,我们经常要判断一个元素是否在一个集合中。比如在字处理软件中,需要检...

bloom filter

Bloom Filter --海量数据过滤的发动机

Bloom Filter 布隆过滤器部分内容参考这位大神的http://blog.csdn.net/hguisu/article/details/7866173  在保证一定高效空间效率和一定的出错率...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)