Anniversary party
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3540 Accepted Submission(s): 1636
Problem Description
There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a tree rooted at the rector V. E. Tretyakov. In order to make the party funny for every one, the rector does not want both an employee and his or her immediate supervisor to be present. The personnel office has evaluated conviviality of each employee, so everyone has some number (rating) attached to him or her. Your task is to make a list of guests with the maximal possible sum of guests' conviviality ratings.
Input
Employees are numbered from 1 to N. A first line of input contains a number N. 1 <= N <= 6 000. Each of the subsequent N lines contains the conviviality rating of the corresponding employee. Conviviality rating is an integer number in a range from -128 to 127. After that go T lines that describe a supervisor relation tree. Each line of the tree specification has the form:
L K
It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line
0 0
L K
It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line
0 0
Output
Output should contain the maximal sum of guests' ratings.
Sample Input
7 1 1 1 1 1 1 1 1 3 2 3 6 4 7 4 4 5 3 5 0 0
Sample Output
5
Source
Recommend
linle
题意是说要举办一个party,有很多人是上下属之间的关系,而且每个人都有一个快乐值,让你求没有直接上下级关系的人中最大快乐值。
树形DP第一题,也是树形DP入门题,让我们设dp[i][0]为第i个人没去参加party,dp[i][1]为第i个人去参加了party,那么从根节点进行DFS搜索到叶子,从叶子开始回溯,那么就得出状态转移方程:
dp[root][1]+=max(dp[v[root][i]][0],dp[v[root][i]][1]);
dp[root][0]+=dp[v[root][i]][1];
dp[root][0]+=dp[v[root][i]][1];
#include<stdio.h>
#include<string.h>
#include<vector>
#define M 6007
using namespace std;
vector<int>v[M];
int vis[M],dp[M][2],happy[M],pre[M];
int n;
int max(int a,int b)
{
return a>b?a:b;
}
int dfs(int root)
{
vis[root]=1;
dp[root][0]=happy[root];
int len=v[root].size();
for(int i=0;i<len;i++)
{
if(!vis[v[root][i]])
{
dfs(v[root][i]);
}
dp[root][1]+=max(dp[v[root][i]][0],dp[v[root][i]][1]);
dp[root][0]+=dp[v[root][i]][1];
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1; i<=n; i++)
{
scanf("%d",&happy[i]);
dp[i][0]=dp[i][1]=0;
vis[i]=0;
pre[i]=-1;
v[i].clear();
}
int a,b;
while(scanf("%d%d",&a,&b),a|b)
{
v[b].push_back(a);
pre[a]=b;
}
a=1;
while(pre[a]!=-1)a=pre[a];
dfs(a);
printf("%d\n",max(dp[a][1],dp[a][0]));
}
return 0;
}
这是坤哥的,思路一样,更容易理解:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=100002;
typedef long long ll;
int dp[maxn][2];
int n,val[maxn];
int H[maxn];
vector<int>Edge[maxn];
void dfs(int u,int fa)
{
int i,j;
int mon=0;
int non=0;
for(i=0; i<Edge[u].size(); ++i)
{
int v=Edge[u][i];
if(v==fa)continue;
dfs(v,u);
mon+=max(dp[v][1],dp[v][0]);
non+=dp[v][0];
}
dp[u][1]=non+H[u];
dp[u][0]=mon;
}
int main()
{
//freopen("D://input.txt","r",stdin);
while(scanf("%d",&n)!=EOF)
{
int i,j,u,v;
for(i=1; i<=n; i++)Edge[i].clear(),cin>>H[i];
while(scanf("%d%d",&u,&v),(u||v))
{
Edge[u].push_back(v);
Edge[v].push_back(u);
}
memset(dp,0,sizeof(int)*(n+1));
dfs(1,-1);
cout<<max(dp[1][1],dp[1][0])<<endl;
}
return 0;
}