# NIM游戏

## （一）NIM simplfied

现在有一堆棋子，共有n颗，两人轮流取子，每次能取1或2颗，谁取到最后一颗棋子谁就是loser，你先开始取

输入：n

输出：必胜第一次应该取出的棋子数量，如果必败，则输出为0

分析：关键在于n%3——如果n%3=1则不可能获胜，必败；如果n%3=2则输出为1给最后对手剩一个；如果 n%3=0则输出为2给最后对手剩1个

错位组合~

#include <stdio.h>
#include <stdlib.h>

int main()
{
int N,n;
int i;
scanf("%d",&N);
for(i=0;i<N;i++)
{
scanf("%d",&n);
int j;
j=n%3;
if(j==0)
printf("2\n");
else if(j==1)
printf("0\n");
else
printf("1\n");
}
return 0;
}

## （二）NIM——POJ2975

### Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

111
1011
1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

### Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

### Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

### Sample Input

3
7 11 13
2
1000000000 1000000000
0

### Sample Output

3
0

array[i]^array[i]=0，则remain^array[i]是如果第i堆石头不加入异或时，其他石头总的异或值。

PS：注意是大于而不是大于等于，每一局都需要取一颗或以上的石头。

#include<stdio.h>
int main()
{
int maxn=1001;
int n,a[maxn];
while(scanf("%d",&n)&&n)
{
int t=0,i=0;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
t=t^a[i];
}
int ans=0;
for(i=0;i<n;i++)
{
if((t^a[i])<a[i])
ans++;
}
printf("%d\n",ans);
}
return 0;
}

• 本文已收录于以下专栏：

举报原因： 您举报文章：NIM游戏 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)