NIM游戏

原创 2016年05月31日 08:54:37

(一)NIM simplfied

          现在有一堆棋子,共有n颗,两人轮流取子,每次能取1或2颗,谁取到最后一颗棋子谁就是loser,你先开始取

          输入:n

          输出:必胜第一次应该取出的棋子数量,如果必败,则输出为0

         分析:关键在于n%3——如果n%3=1则不可能获胜,必败;如果n%3=2则输出为1给最后对手剩一个;如果 n%3=0则输出为2给最后对手剩1个

              错位组合~

#include <stdio.h>
#include <stdlib.h>

  int main()
{
int N,n;
int i;
scanf("%d",&N);
for(i=0;i<N;i++)
{
scanf("%d",&n);
int j;
j=n%3;
if(j==0)
printf("2\n");
else if(j==1)
printf("0\n");
else
printf("1\n");
}
return 0;
}


(二)NIM——POJ2975

    

Description

Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.

A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.

Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:


  111
1011
1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

Input

The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.

Output

For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input

 
3
7 11 13
2
1000000000 1000000000
0

Sample Output

 
3
0


分析给定n堆石子,如果你必输,输出0,否则输出一个方案数,表明总共有多少总策略可以保证自己必胜

题目给出了必输的要求是n堆石子全部异或xor如果结果为0,则此状态必输。必胜的关键就是我们要在其中一堆石子中拿取一定量的石头使n堆石子异或结果为0。

题目要求输出在几堆石子中取子后能满足要求

array[i]^array[i]=0,则remain^array[i]是如果第i堆石头不加入异或时,其他石头总的异或值。

只要array[i]>remain^array[i],则第i堆石头可行。

PS:注意是大于而不是大于等于,每一局都需要取一颗或以上的石头。

#include<stdio.h>
int main()
{
int maxn=1001;
int n,a[maxn];
    while(scanf("%d",&n)&&n)
    {
int t=0,i=0;
for(i=0;i<n;i++)
{
    scanf("%d",&a[i]);
    t=t^a[i];
}
int ans=0;
for(i=0;i<n;i++)
{
if((t^a[i])<a[i])
ans++;
}
  printf("%d\n",ans);
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

nim游戏详解(易懂)

Nim游戏的概述: 还记得这个游戏吗? 给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取。最后拿光珍珠的人输。 后来,在一份资料上看到,这种游戏称为“拈(Nim)”。据说,...
  • Summer__show_
  • Summer__show_
  • 2017年04月15日 16:57
  • 1213

Nim 游戏及其变形

Nim 在博弈中经常出现,很多看似复杂的题目,在分析和变形之后就回归了最初的nim游戏。 经典的nim游戏 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子。 每一次操作Alice和Bob...
  • clover_hxy
  • clover_hxy
  • 2016年12月22日 20:25
  • 1404

博弈论 Nim游戏与SG函数

SG函数&Nim游戏
  • neighthorn
  • neighthorn
  • 2016年07月09日 21:41
  • 598

Nim游戏,Grundy函数介绍

Nim游戏,Grundy函数介绍部分翻译自:http://www.cut-the-knot.org/ctk/May2001.shtmlNim是一种很古老又很迷人的双人参与的数学游戏。这个游戏的名字和相...
  • mystoryfantacy
  • mystoryfantacy
  • 2016年06月10日 21:01
  • 385

取石子游戏详解NIM

取石子游戏详解NIM 分类: 编程之美2014-09-13 09:38 478人阅读 评论(3) 收藏 举报 编程之美 目录(?)[+] http:...
  • acm_BaiHuzi
  • acm_BaiHuzi
  • 2014年11月30日 14:52
  • 1220

C++抽象编程——回溯算法(5)——Nim游戏代码及其反思

实话,距离上一篇博客发表完到现在,我为了这个代码写了一个多小时。里面的思维方式让我受益匪浅。很累,但是很开心。下面我就分享出来大家一起看看。我写的时候调试了几次,最后我把我几次调试的过程都写在了注释里...
  • redRnt
  • redRnt
  • 2017年05月09日 23:16
  • 452

尼姆(Nim)游戏

不用博弈论的概念,通俗地讲一下尼姆(Nim)游戏 现有若干堆石子,每堆石子的数量都是有限的,双人进行游戏,每个人在每次行动的时候可以“选择一堆石子并拿走若干颗,不能不拿”,没有石子可拿的人为...
  • fanoluo
  • fanoluo
  • 2014年10月31日 22:55
  • 713

博弈之Nim浅谈

博弈论应该算是一门独立的学问吧,它是现代数学不断进步的产物,是运筹学中重要的一部分。作为一个计算机科学与技术专业的学生,在这里谈论这高深的“博弈”二字实有不妥,所以,讲的不好的地方请多见谅。 Nim的...
  • Yick_Liao
  • Yick_Liao
  • 2015年12月18日 15:23
  • 966

Nim教程翻译(三)

原文链接:http://nim-lang.org/docs/tut2.html Nim Tutorial (Part II) 作者:Andreas Rumpf 版本:0.11.2 介绍 "R...
  • dajiadexiaocao
  • dajiadexiaocao
  • 2015年06月04日 09:40
  • 1395

使用Python编写一个聪明的尼姆游戏

关于尼姆游戏的介绍请参考上一篇文章:一个傻傻的尼姆游戏及其Python实现,本文使用Python实现一个聪明的尼姆游戏。 在聪明模式中,计算机每次拿走足够多的物品使得堆的大小是2的幂次方减1——也就...
  • oh5W6HinUg43JvRhhB
  • oh5W6HinUg43JvRhhB
  • 2017年11月11日 00:00
  • 75
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:NIM游戏
举报原因:
原因补充:

(最多只允许输入30个字)