聚类分析---基于中心的k-medoids

转载 2013年12月04日 10:18:55

Cluster the following data set of ten objects into two clusters i.e. k = 2.

把下面10个数据对象分成2个簇

Consider a data set of ten objects as follows:

第一步:
我们假设c1=(3,4)c2=(7,4)是两个中心。

(2,6)到c1(3,4)的距离是3,(7,4)到c2(2,6)的距离是7,因此(2,6)和c1是一个簇。

按照同样的方法。得到:

Cluster1 = {(3,4)(2,6)(3,8)(4,7)}

Cluster2 = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)}

 

Cost((3,4),(2,6))=|3-2|+|6-4|=3

第二步:

选择一个非中心点o’,我们假设o’=(7,3)

 

 

用同样的方法划分出两个簇:

然后再计算它总共的开销:

因此前面的那个选择更好。因此我们尝试了一些其他的非中心的点,发现我们的第一个选择是最好的。因此不会重新分配,算法停止。

 

 

K中心点算法(K-medoids)

K中心点算法(K-medoids) 前面介绍了k-means算法,并列举了该算法的缺点。而K中心点算法(K-medoids)正好能解决k-means算法中的“噪声”敏感这个问题。 如何解决...
  • zanghui426
  • zanghui426
  • 2015年12月18日 10:52
  • 1881

K-means 和 K-medoids算法聚类分析

1    聚类是对物理的或者抽象的对象集合分组的过程,聚类生成的组称为簇,而簇是数据对象的集合。         (1)簇内部的任意两个对象之间具有较高的相似度。(2)属于不同的簇的两个对象间具有较高...
  • panjiao119
  • panjiao119
  • 2017年06月05日 22:08
  • 1170

K中心点算法(K-medoids) java实现

package com.kmedoids; import java.util.ArrayList; public class Cluster { private String clusterN...
  • xiaoyu4009
  • xiaoyu4009
  • 2015年06月04日 16:19
  • 1471

聚类算法之k-medoids算法

上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相似的。事实也确实如此,k-m...
  • sunanger_wang
  • sunanger_wang
  • 2013年04月26日 09:11
  • 4694

聚类分析方法——划分聚类

1.     划分聚类 其实从某种角度讲,划分聚类是完全不用赘述的一种聚类方法,可能也是最常见的聚类算法了。著名的k-means算法就是个中典型。这次的内容主要是通过k-means聚类算法来总体...
  • colapin
  • colapin
  • 2016年06月24日 10:50
  • 943

k-medoids(学习Free Mind知识整理)

看到这里的k-medoids联想到聚类方法有哪些? http://blog.chinaunix.net/uid-10289334-id-3758310.html 这k-medoids和k-means两...
  • langb2014
  • langb2014
  • 2015年08月24日 13:00
  • 994

聚类分析(二)——K中心点算法(k-mediods)

K中心点算法(K-medoids) 前面介绍了k-means算法,并列举了该算法的缺点。而K中心点算法(K-medoids)正好能解决k-means算法中的 “噪声”敏感这个问题。 如何解...
  • SSJJRRRR
  • SSJJRRRR
  • 2014年12月06日 21:14
  • 1242

聚类算法--K-Medoids(基于R的应用示例)

一个有极大值的对象可能相当程度上扭曲数据的分布,所以k-means算法对于孤立点是敏感的。 不采用簇中对象的平均值作为参照点,可以选用簇中位置中心的对象,即medoid。k-medoids 聚类算法的...
  • buracag_mc
  • buracag_mc
  • 2017年07月08日 23:54
  • 409

机器学习:K-means和K-medoids对比[4]

k-medoids和k-means 实现和比较
  • databatman
  • databatman
  • 2016年01月01日 18:44
  • 3909

Matlab聚类分析_层次聚类+kmeans聚类等

Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合...
  • a1b2c3d4123456
  • a1b2c3d4123456
  • 2015年05月24日 22:42
  • 2517
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:聚类分析---基于中心的k-medoids
举报原因:
原因补充:

(最多只允许输入30个字)