聚类分析---基于中心的k-medoids

转载 2013年12月04日 10:18:55

Cluster the following data set of ten objects into two clusters i.e. k = 2.

把下面10个数据对象分成2个簇

Consider a data set of ten objects as follows:

第一步:
我们假设c1=(3,4)c2=(7,4)是两个中心。

(2,6)到c1(3,4)的距离是3,(7,4)到c2(2,6)的距离是7,因此(2,6)和c1是一个簇。

按照同样的方法。得到:

Cluster1 = {(3,4)(2,6)(3,8)(4,7)}

Cluster2 = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)}

 

Cost((3,4),(2,6))=|3-2|+|6-4|=3

第二步:

选择一个非中心点o’,我们假设o’=(7,3)

 

 

用同样的方法划分出两个簇:

然后再计算它总共的开销:

因此前面的那个选择更好。因此我们尝试了一些其他的非中心的点,发现我们的第一个选择是最好的。因此不会重新分配,算法停止。

 

 

相关文章推荐

K中心点算法(K-medoids)

K中心点算法(K-medoids) 前面介绍了k-means算法,并列举了该算法的缺点。而K中心点算法(K-medoids)正好能解决k-means算法中的“噪声”敏感这个问题。 如何解决...

k-medoids聚类算法源代码

  • 2011年01月11日 14:13
  • 3KB
  • 下载

聚类算法--K-Medoids(基于R的应用示例)

一个有极大值的对象可能相当程度上扭曲数据的分布,所以k-means算法对于孤立点是敏感的。 不采用簇中对象的平均值作为参照点,可以选用簇中位置中心的对象,即medoid。k-medoids 聚类算法的...

最大最小距离算法(K-MEANS K-medoids )聚类算法的结合运用

聚类算法通常会得到一种分类,将n个点聚合成k类,同一聚类(即插槽簇)中的对象相似度较高;而不同类中的对象相似度较小。 聚类算法的基本流程如下: (1)从n个节点中选择 k 个节点作为初始聚类中心。...

通过K-MEDOIDS算法对时间序列进行聚类的实现

最近做数据挖掘相关的工作,题目是时间序列聚类研究,目前对于这方面的研究都还只是在起步阶段,被广泛使用的还是基于K-MEDOIDS的聚类,放弃K-MEANS的主要原因还是时间序列之间序列的计算难度,对于...

聚类算法之k-medoids算法

上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相似的。事实也确实如此,k-m...

聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut

聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral cluster...

几种聚类算法的结合运用(K-MEANS K-medoids 最大最小距离算法)

几种聚类算法的结合运用(K-MEANS、 K-medoids、 最大最小距离算法) 聚类算法通常会得到一种分类,将n个点聚合成k类,同一聚类(即插槽簇)中的对象相似度较高;而不同类中的对象相似度较小...

聚类分析--k中心点算法

k中心点算法思想:k-means是每次选簇的均值作为新的中心,迭代直到簇中对象分布不再变化。其缺点是对于离群点是敏感的,因为一个具有很大极端值的对象会扭曲数据分布。那么我们可以考虑新的簇中心不选择均值...

聚类分析之K中心点算法(k-mediods)

前面介绍了k-means算法,并列举了该算法的缺点。而K中心点算法(K-medoids)正好能解决k-means算法中的 “噪声”敏感这个问题。 如何解决的呢? 首先,我们得介绍下k-me...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:聚类分析---基于中心的k-medoids
举报原因:
原因补充:

(最多只允许输入30个字)