快速幂运算的应用

原创 2012年03月29日 14:08:19

快速幂取余的方法,所得返回值为 a^b % p

int f(int a,int b,int p)
{
    int temp = 1;
    while(b)
    {
        if(b & 0x01)
        {
            temp = (temp * (a%p)) % p;
        }
        a = ( (a%p) * (a%p) ) % p;
        b >>= 1;
    }
    return temp;
}

例如:a^11,设b = 11,写成2进制为1011。

则a^11可以表示为   a^( 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 ) = a^(2^3) *a^(2^1) * a^(2^0)

二进制值为1的那项,在a的指数中就存在a^(2^i),

所以可以把a^(2^0),a^(2^1),a^(2^2)......求出来,

如果在b的二进制表示中第i位为1,就把a^(2^i)乘到最终保存结果的变量中去。

而求a^(2^0),a^(2^1),a^(2^2)......a^(2^i)......时,

a^(2^ (i+1) ) = a^( 2^i * 2 ) = (a^(2i))^2

所以如果知道了a^(2^0) ,对它进行平方就可以得到a^(2^1),以此类推,

所以在程序中我们就不断的将a平方,再将b向右移位。


Q1:Compute (a^(b^c)) % 317000011   ( 1 <= a,b,c <= 100000)

Tips:

⒈ 费马小定理: 如果p为素数,则a^(p-1) % p = 1;

⒉ 除法定理: 对任意整数a和任意正整数n,存在唯一的整数q和r,满足 0 <= r < n , 并且 a = qn + r;

解:设b^c = n(p-1) + d,则a^(b^c) = a^(n(p-1)) * a^(d),依据定理⒈ ,a^(b^c) = a^(d),

而d = b^c Mod (p-1)。所以 a^(b^c) % p = a^( b^c Mod (p-1) ) Mod p 。

#include <stdio.h>

#define P 317000011

unsigned long long f(unsigned long long a,unsigned long long b,unsigned long long p)
{
    unsigned long long temp = 1uLL;
    while(b)
    {
        if(b & 0x01uLL)
        {
            temp = ((temp%p) * (a%p)) % p;
        }
        a = ((a%p)*(a%p))%p;
        b >>= 1uLL;
    }
    return temp;
}


int main()
{
    int t;
    unsigned long long a,b,c;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%llu %llu %llu",&a,&b,&c);
        printf("%llu\n",f(a,f(b,c,P-1),P));
    }
    return 0;
}

Q2:矩阵幂 快速求Fibonacci数列的第 N 项

定义一个基础矩阵 base

┌      ┐     ┌      ┐

│ 1  1 │   = │F2  F1

│ 1  0 │     F1  F0

└      ┘     └      ┘

             ┌          ┐

求base^n  =  │Fn+1  Fn  │

             │Fn    Fn-1│

             └          ┘

所以矩阵的快速幂乘方方法,可以高效的求的Fibonacci数列,O(log2n)。

int f(int n)
{
    if(n == 0)  return 0;
    else if(n == 1) return 1;
    else if(n == 2) return 1;
    else
    {
        int base[2][2] = {{1,1},{1,0}};
        int b = n-1;
        int res[2][2] = {{1,1},{1,1}};
        int temp[2][2];
        while(b)
        {
            if(b & 0x01)
            {
                temp[0][0] = res[0][0] * base[0][0] + res[0][1] * base[1][0];
                temp[0][1] = res[0][0] * base[0][1] + res[0][1] * base[1][1];
                temp[1][0] = res[1][0] * base[0][0] + res[1][1] * base[1][0];
                temp[1][1] = res[1][0] * base[0][1] + res[1][1] * base[1][1];
                res[0][0] = temp[0][0]; res[0][1] = temp[0][1];
                res[1][0] = temp[1][0]; res[1][1] = temp[1][1];
            }
            temp[0][0] = base[0][0] * base[0][0] + base[0][1] * base[1][0];
            temp[0][1] = base[0][0] * base[0][1] + base[0][1] * base[1][1];
            temp[1][0] = base[1][0] * base[0][0] + base[1][1] * base[1][0];
            temp[1][1] = base[1][0] * base[0][1] + base[1][1] * base[1][1];
            base[0][0] = temp[0][0]; base[0][1] = temp[0][1];
            base[1][0] = temp[1][0]; base[1][1] = temp[1][1];
            b >>= 1;
        }
        return res[0][0];
    }
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

快速幂模运算

  • 2012-09-06 14:29
  • 311B
  • 下载

(扩展)欧几里得算法、素性测试、埃式筛法、区间筛法、快速幂运算

来自挑战程序设计竞赛2.6 数学问题的解题窍门 1.素数测试 //素性测试O(√n) bool is_prime(int n) { for(int i=2;i*i<=n;i++){ ...

矩阵的运算 --- 矩阵快速幂(UVA10689 - Yet another Number Sequence)

我们向大家介绍了快速幂取模(点我),大家对快速幂都有了一定的了解。由此我们产生了一个想法,既然数值能够使用快速幂来提高幂运算的效率,那么同理矩阵也行。于是引出我们今天要介绍的“矩阵快速幂”。     ...

[ACM] hdu 3923 Invoker (Poyla计数,快速幂运算,扩展欧几里得或费马小定理)

Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows...

poj3233矩阵快速幂运算

//此题不是求K次幂而是求累乘和,如果逐加起来复杂度变成O(N^3*K) //写出递推公式的时候矩阵是A与Sk之间的关系 #include #include using namespa...

【模板篇】01 矩阵运算 方阵快速幂

模板 01 矩阵运算 方阵快速幂 和一些乱七八糟的操作

快速幂取模运算学习

POJ 1995 Raising Modulo Numbers快速幂模板,最简单的题意: 我的:对x^n进行取模运算,对n转换成x进制,然后有1的地方就要进行相乘,考虑一下位就行了#include ...

HDU 2276-Kiki & Little Kiki 2(矩阵快速幂+位运算)

Kiki & Little Kiki 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot...

HDU 2276 Kiki & Little Kiki 2 (位运算+矩阵快速幂)

HDU 2276 Kiki & Little Kiki 2 (位运算+矩阵快速幂) ACM 题目地址:HDU 2276 Kiki & Little Kiki 2 题意:  一排灯,...
  • hcbbt
  • hcbbt
  • 2014-08-04 01:06
  • 1839

快速幂运算

如果我们要求X^n次方; 当n很大的时候; 会GG; 这个时候就会用到快速幂算法了, 顾名思义, 快速幂, 快速求幂。 因为任何一个数都可以用2进制表示。 比如9 = 2 ^3 + ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)