快速幂运算的应用

原创 2012年03月29日 14:08:19

快速幂取余的方法,所得返回值为 a^b % p

int f(int a,int b,int p)
{
    int temp = 1;
    while(b)
    {
        if(b & 0x01)
        {
            temp = (temp * (a%p)) % p;
        }
        a = ( (a%p) * (a%p) ) % p;
        b >>= 1;
    }
    return temp;
}

例如:a^11,设b = 11,写成2进制为1011。

则a^11可以表示为   a^( 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 ) = a^(2^3) *a^(2^1) * a^(2^0)

二进制值为1的那项,在a的指数中就存在a^(2^i),

所以可以把a^(2^0),a^(2^1),a^(2^2)......求出来,

如果在b的二进制表示中第i位为1,就把a^(2^i)乘到最终保存结果的变量中去。

而求a^(2^0),a^(2^1),a^(2^2)......a^(2^i)......时,

a^(2^ (i+1) ) = a^( 2^i * 2 ) = (a^(2i))^2

所以如果知道了a^(2^0) ,对它进行平方就可以得到a^(2^1),以此类推,

所以在程序中我们就不断的将a平方,再将b向右移位。


Q1:Compute (a^(b^c)) % 317000011   ( 1 <= a,b,c <= 100000)

Tips:

⒈ 费马小定理: 如果p为素数,则a^(p-1) % p = 1;

⒉ 除法定理: 对任意整数a和任意正整数n,存在唯一的整数q和r,满足 0 <= r < n , 并且 a = qn + r;

解:设b^c = n(p-1) + d,则a^(b^c) = a^(n(p-1)) * a^(d),依据定理⒈ ,a^(b^c) = a^(d),

而d = b^c Mod (p-1)。所以 a^(b^c) % p = a^( b^c Mod (p-1) ) Mod p 。

#include <stdio.h>

#define P 317000011

unsigned long long f(unsigned long long a,unsigned long long b,unsigned long long p)
{
    unsigned long long temp = 1uLL;
    while(b)
    {
        if(b & 0x01uLL)
        {
            temp = ((temp%p) * (a%p)) % p;
        }
        a = ((a%p)*(a%p))%p;
        b >>= 1uLL;
    }
    return temp;
}


int main()
{
    int t;
    unsigned long long a,b,c;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%llu %llu %llu",&a,&b,&c);
        printf("%llu\n",f(a,f(b,c,P-1),P));
    }
    return 0;
}

Q2:矩阵幂 快速求Fibonacci数列的第 N 项

定义一个基础矩阵 base

┌      ┐     ┌      ┐

│ 1  1 │   = │F2  F1

│ 1  0 │     F1  F0

└      ┘     └      ┘

             ┌          ┐

求base^n  =  │Fn+1  Fn  │

             │Fn    Fn-1│

             └          ┘

所以矩阵的快速幂乘方方法,可以高效的求的Fibonacci数列,O(log2n)。

int f(int n)
{
    if(n == 0)  return 0;
    else if(n == 1) return 1;
    else if(n == 2) return 1;
    else
    {
        int base[2][2] = {{1,1},{1,0}};
        int b = n-1;
        int res[2][2] = {{1,1},{1,1}};
        int temp[2][2];
        while(b)
        {
            if(b & 0x01)
            {
                temp[0][0] = res[0][0] * base[0][0] + res[0][1] * base[1][0];
                temp[0][1] = res[0][0] * base[0][1] + res[0][1] * base[1][1];
                temp[1][0] = res[1][0] * base[0][0] + res[1][1] * base[1][0];
                temp[1][1] = res[1][0] * base[0][1] + res[1][1] * base[1][1];
                res[0][0] = temp[0][0]; res[0][1] = temp[0][1];
                res[1][0] = temp[1][0]; res[1][1] = temp[1][1];
            }
            temp[0][0] = base[0][0] * base[0][0] + base[0][1] * base[1][0];
            temp[0][1] = base[0][0] * base[0][1] + base[0][1] * base[1][1];
            temp[1][0] = base[1][0] * base[0][0] + base[1][1] * base[1][0];
            temp[1][1] = base[1][0] * base[0][1] + base[1][1] * base[1][1];
            base[0][0] = temp[0][0]; base[0][1] = temp[0][1];
            base[1][0] = temp[1][0]; base[1][1] = temp[1][1];
            b >>= 1;
        }
        return res[0][0];
    }
}



快速幂模运算

  • 2012年09月06日 14:29
  • 311B
  • 下载

POJ 3641 -- 快速幂运算,素数判定

快速幂运算 模运算 素数判定 题意 判定一个数p是否为伪素数。 如果一个非素数 p 对任何 a > 1 满足 a^p = a (mod p),则称p是伪素数。 题解 用快速幂运...

[备战NOI同步赛]快速幂模板(二分/位运算)

/* 快速幂模板 By:qpswwww(ZYK) 含二分快速幂、位运算快速幂 */ #define LONG long long int int MOD; //取模 LONG n...
  • qpswwww
  • qpswwww
  • 2014年07月03日 21:57
  • 588

挑战程序竞赛系列(15):2.6快速幂运算

挑战程序竞赛系列(15):2.6快速幂运算 详细代码可以fork下Github上leetcode项目,不定期更新。 练习题如下: POJ 3641: Pseudoprime numbers POJ...

HDU 5478 2015 ACM/ICPC 上海赛区网络赛1011 模运算+快速幂

Can you find it Time Limit: 8000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)...

矩阵运算,矩阵快速幂,模板

#include #include #include #include using namespace std; #define MOD 1000000007 struct Mat{ int...

挑战程序设计解题报告 2.6.3快速幂运算

挑战程序设计解题报告 2.6.3快速幂运算 1.POJ 3641          题意介绍了一种理论即费马小定理,费马小定理指出若p是一个素数,那么对于任意的整数a(a > 1),都有ap = a ...
  • gscsdlz
  • gscsdlz
  • 2016年07月18日 21:02
  • 204

Rightmost Digit(快速幂+数学知识OR位运算)

C - Rightmost Digit Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S...

ZZY的宠物(矩阵运算+快速幂)

E :ZZY的宠物 描述 ZZY领养了一对刚刚出生的不知名小宠物..巨萌巨可爱!!...小宠物的生命为5个单位时间并且不会在中间出意外翘辫子(如: 从0出生能活到5但活不到6)..小宠物经过2个单...

〖数学算法〗大数模幂运算快速算法

有朋友问我的博文《素性测试》中的Miller-Rabin算法的大数模幂运算快速算法怎么理解,由于在《素性测试》中没有讲解算法原理,所以在此单独一个篇文章详细讲这个算法。这是一个在密码学中比较重要的算法...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:快速幂运算的应用
举报原因:
原因补充:

(最多只允许输入30个字)