二叉树的遍历是指按照一定次序访问二叉树中的所有节点,且每个节点仅被访问一次的过程。是最基本的运算,是其他运算的基础。
二叉树有两种存储结构:顺序存储和链式存储
顺序存储: (对完全二叉树来说,可以充分利用存储空间,但对于一般的二叉树,只有少数的存储单元被利用)
typedef struct
{
ElemType data[MaxSize];
int n;
}SqBTree;
链式存储:
typedef struct node
{
ElemType data;
struct node *lchild;
struct node *rchild;
} BTNode;
二叉树三种递归的遍历方法:
先序遍历 | 访问根节点→先序遍历左子树→先序遍历右子树 |
中序遍历 | 中序遍历左子树→访问根节点→中序遍历右子树 |
后序遍历 | 后序遍历左子树→后序遍历右子树→访问根节点 |
二叉树遍历的递归算法:
void preOrder(BTNode *b) //先序遍历递归算法
{
if (b!=NULL)
{
visit(b);
preOrder(b->lchild);
preOrder(b->rchild);
}
}
void InOrder(BTNode *b) //中序遍历递归算法
{
if(b!=NULL)
{
InOrder(b->lchild);
visit(b);
InOrder(b->rchild);
}
}
void PostOrder(BTNode *b) //后序遍历递归算法
{
if(b!=NULL){
PostOrder(b->lchild);
PostOrder(b->rchild);
visit(b);
}
}
二叉树非递归遍历算法:
有两种方法:①用栈存储信息的方法 ②增加指向父节点的指针的方法 暂时只介绍下栈的方法
先序遍历:
void PreOrder(BTNode *b)
{
Stack s;
while(b!=NULL||!s.empty())
{
if(b!=NULL){
visit(b);
s.push(b);
b=b->left;
}
else{
b=s.pop();
b=b->right;
}
}
}
中序遍历:
void InOrder(BTNode *b){
Stack s;
while(b!=NULL||!s.empty()){
if (b!=NULL)
{
s.push(b);
s=s->left
}
if(!s.empty()){
b=s.pop();
visit(b);
b=b->right;
}
}
}
后序遍历:
void PostOrder(BTNode *b){
Stack s;
while(b!=NULL){
s.push(b);
}
while(!s.empty()){
BTNode* node=s.pop();
if(node->bPushed){
visit(node);
}
else{
s.push(node);
if(node->right!=NULL){
node->right->bPushed=false;
s.push(node->right);
}
if(node->left!=NULL){
node->left->bpushed=false;
s.push(node->left);
}
node->bPushed=true; //如果标识位为true,则表示入栈
}
}
}
层次遍历算法:(用队列的方法)
void levelOrder(BTNode *b){
Queue Q;
Q.push(b);
while(!Q.empty()){
node=Q.front();
visit(node);
if(NULL!=node->left){
Q.push(node->left);
}
if(NULL!=right){
Q.push(node->right);
}
}
}
已知先序和中序求后序的算法:(已知后序和中序求先序的算法类似,但已知先序和后序无法求出中序)
int find(char c,char A[],int s,int e) /* 找出中序中根的位置。 */
{
int i;
for(i=s;i<=e;i++)
if(A[i]==c) return i;
}
/* 其中pre[]表示先序序,pre_s为先序的起始位置,pre_e为先序的终止位置。 */
/* 其中in[]表示中序,in_s为中序的起始位置,in_e为中序的终止位置。 */
/* pronum()求出pre[pre_s~pre_e]、in[in_s~in_e]构成的后序序列。 */
void pronum(char pre[],int pre_s,int pre_e,char in[],int in_s,int in_e)
{
char c;
int k;
if(in_s>in_e) return ; /* 非法子树,完成。 */
if(in_s==in_e){printf("%c",in[in_s]); /* 子树子仅为一个节点时直接输出并完成。 */
return ;
}
c=pre[pre_s]; /* c储存根节点。 */
k=find(c,in,in_s,in_e); /* 在中序中找出根节点的位置。 */
pronum(pre,pre_s+1,pre_s+k-in_s,in,in_s,k-1); /* 递归求解分割的左子树。 */
pronum(pre,pre_s+k-in_s+1,pre_e,in,k+1,in_e); /* 递归求解分割的右子树。 */
printf("%c",c); /* 根节点输出。 */
}
main()
{
char pre[]="abdc";
char in[]="bdac";
printf("The result:");
pronum(pre,0,strlen(in)-1,in,0,strlen(pre)-1);
getch();
}