理解条件概率

网上看了一些解释,觉得这个比较形象易懂:

http://zhidao.baidu.com/question/220288964.html?qbl=relate_question_3&word=%CC%F5%BC%FE%B8%C5%C2%CA


在同一个样本空间 Ω 中的事件或者子集 A 与 B,如果随机从 Ω 中选出的一个元素属于 B,那么下一个随机选择的元素属于 A 的概率就定义为在 B 的前提下 A 的条件概率。
 条件概率 示例:就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为 P(A|B),读作“在 B 条件下 A 的概率”。  条件概率公式
如:根据大量的统计,大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是多少?

相对来讲,下面的文章虽然写的挺好,但是用文氏图解释条件概率的时候并没有说的让所有人都明白,反而容易把人搞糊涂。 所以还要解释几句:


文氏图用面积表示概率,下面A和B的交集部分就是A和B同时发生的概率, 除以B发生的概率(B的面积),就是条件概率的定义。


贝叶斯推断及其互联网应用(一):定理简介

要理解贝叶斯推断,必须先理解贝叶斯定理。后者实际上就是计算"条件概率"的公式。

所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

因此,

同理可得,

所以,

这就是条件概率的计算公式。


条件概率的定义就是一种计算公式, 上面经过若干简单的推导,得到另一个计算公式。

《Probability: Theory and Examples by Durrett》是剑桥大学出版社出版的高等概率论教材,由Richard Durrett编著,被众多美国大学统计系作为标准教材使用。书中深入探讨了条件概率的定义及其在统计推断中的重要角色。 参考资源链接:[Probability :Theory and Examples by Durrett](https://wenku.csdn.net/doc/64ae106bb9988108f21d6be5?spm=1055.2569.3001.10343) 条件概率是指在一个事件已经发生的情况下,另一个事件发生的概率。在概率论中,它通常用P(A|B)表示,即事件B发生的条件下事件A发生的概率。数学上,条件概率可以通过贝叶斯定理来定义,表达式为P(A|B) = P(A∩B) / P(B),前提是P(B) > 0。 在统计推断中,条件概率理解贝叶斯统计方法的基础。在贝叶斯框架下,通过已知的先验概率和观测数据来计算后验概率,这种计算就是基于条件概率的。例如,在贝叶斯分析中,我们可能需要评估给定某些证据(数据)时某个假设(事件)为真的概率,即P(假设|证据)。 为了更好地掌握这一概念,推荐您仔细阅读《Probability: Theory and Examples by Durrett》中的相关章节,特别是关于条件概率和贝叶斯定理的部分。通过理论讲解和书中提供的丰富实例,您可以进一步理解条件概率在实际问题中的应用,为深入研究统计推断打下坚实的基础。 参考资源链接:[Probability :Theory and Examples by Durrett](https://wenku.csdn.net/doc/64ae106bb9988108f21d6be5?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值