理解条件概率

网上看了一些解释,觉得这个比较形象易懂:

http://zhidao.baidu.com/question/220288964.html?qbl=relate_question_3&word=%CC%F5%BC%FE%B8%C5%C2%CA


在同一个样本空间 Ω 中的事件或者子集 A 与 B,如果随机从 Ω 中选出的一个元素属于 B,那么下一个随机选择的元素属于 A 的概率就定义为在 B 的前提下 A 的条件概率。
 条件概率 示例:就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为 P(A|B),读作“在 B 条件下 A 的概率”。  条件概率公式
如:根据大量的统计,大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是多少?

相对来讲,下面的文章虽然写的挺好,但是用文氏图解释条件概率的时候并没有说的让所有人都明白,反而容易把人搞糊涂。 所以还要解释几句:


文氏图用面积表示概率,下面A和B的交集部分就是A和B同时发生的概率, 除以B发生的概率(B的面积),就是条件概率的定义。


贝叶斯推断及其互联网应用(一):定理简介

要理解贝叶斯推断,必须先理解贝叶斯定理。后者实际上就是计算"条件概率"的公式。

所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

因此,

同理可得,

所以,

这就是条件概率的计算公式。


条件概率的定义就是一种计算公式, 上面经过若干简单的推导,得到另一个计算公式。

参考资源链接:[probability and statistics DEGROOT(第三版)完整英文答案](https://wenku.csdn.net/doc/6412b67abe7fbd1778d46dec?utm_source=wenku_answer2doc_content) 在概率论与统计学领域,条件概率和边缘概率是两个基本且重要的概念。条件概率描述了在某个条件下事件发生的概率,而边缘概率则描述了单个事件发生的概率,不考虑其他条件。为了深入理解这两个概念的区别与联系,推荐参考《probability and statistics DEGROOT(第三版)完整英文答案》。 条件概率定义为在事件B已经发生的条件下,事件A发生的概率,记作P(A|B)。根据贝叶斯定理,条件概率可以表示为: P(A|B) = P(A∩B) / P(B),其中P(B) > 0。 这表明,要计算条件概率,需要先知道两个事件同时发生的概率P(A∩B)和事件B发生的概率P(B)。 边缘概率则是在所有可能的条件组合下,某个事件发生的概率。如果我们有一个随机变量X,其可能取值为{x1, x2, ..., xn},那么X取特定值xi的边缘概率可以表示为: P(X=xi) = Σ P(X=xi, Y=yj),其中Y取遍所有可能的取值。 两者的关系在于,边缘概率可以通过对条件概率求和得到。例如,如果我们要计算X的边缘分布,可以通过对Y的所有可能取值下的条件概率P(X=xi|Y=yj)求和来得到: P(X=xi) = Σ P(X=xi|Y=yj)P(Y=yj)。 通过这样的操作,我们不仅能够掌握条件概率和边缘概率的计算方法,还能够理解它们在解决实际问题时的适用场景。如果想要获取更详尽的解释和更多实例,建议查阅《probability and statistics DEGROOT(第三版)完整英文答案》,该资源将为你的学习提供完整的解答和深入的理解。 参考资源链接:[probability and statistics DEGROOT(第三版)完整英文答案](https://wenku.csdn.net/doc/6412b67abe7fbd1778d46dec?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值