理解A*寻路算法具体过程

转载 2015年03月10日 10:35:07

原文地址:http://www.cnblogs.com/technology/archive/2011/05/26/2058842.html

        当然寻路算法不止 A* 这一种, 还有递归, 非递归, 广度优先, 深度优先, 使用堆栈等等, 有兴趣的可以研究研究~~

简易地图

        如图所示简易地图, 其中绿色方块的是起点 (用 A 表示), 中间蓝色的是障碍物, 红色的方块 (用 B 表示) 是目的地. 为了可以用一个二维数组来表示地图, 我们将地图划分成一个个的小方块.

        二维数组在游戏中的应用是很多的, 比如贪吃蛇和俄罗斯方块基本原理就是移动方块而已. 而大型游戏的地图, 则是将各种"地貌"铺在这样的小方块上.

寻路步骤

        1. 从起点A开始, 把它作为待处理的方格存入一个"开启列表", 开启列表就是一个等待检查方格的列表.

        2. 寻找起点A周围可以到达的方格, 将它们放入"开启列表", 并设置它们的"父方格"为A.

        3. 从"开启列表"中删除起点 A, 并将起点 A 加入"关闭列表", "关闭列表"中存放的都是不需要再次检查的方格

        图中浅绿色描边的方块表示已经加入 "开启列表" 等待检查. 淡蓝色描边的起点 A 表示已经放入 "关闭列表" , 它不需要再执行检查.

        从 "开启列表" 中找出相对最靠谱的方块, 什么是最靠谱? 它们通过公式 F=G+H 来计算.

        F = G + H

                表示从起点 A 移动到网格上指定方格的移动耗费 (可沿斜方向移动).

                表示从指定的方格移动到终点 B 的预计耗费 (H 有很多计算方法, 这里我们设定只可以上下左右移动).

        我们假设横向移动一个格子的耗费为10, 为了便于计算, 沿斜方向移动一个格子耗费是14. 为了更直观的展示如何运算 FGH, 图中方块的左上角数字表示 F, 左下角表示 G, 右下角表示 H. 看看是否跟你心里想的结果一样?

        从 "开启列表" 中选择 F 值最低的方格 C (绿色起始方块 A 右边的方块), 然后对它进行如下处理:

        4. 把它从 "开启列表" 中删除, 并放到 "关闭列表" 中.

        5. 检查它所有相邻并且可以到达 (障碍物和 "关闭列表" 的方格都不考虑) 的方格. 如果这些方格还不在 "开启列表" 里的话, 将它们加入 "开启列表", 计算这些方格的 G, H 和 F 值各是多少, 并设置它们的 "父方格" 为 C.

        6. 如果某个相邻方格 D 已经在 "开启列表" 里了, 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些, 如果新的G值更低, 那就把它的 "父方格" 改为目前选中的方格 C, 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的). 如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.

        如图, 我们选中了 C 因为它的 F 值最小, 我们把它从 "开启列表" 中删除, 并把它加入 "关闭列表". 它右边上下三个都是墙, 所以不考虑它们. 它左边是起始方块, 已经加入到 "关闭列表" 了, 也不考虑. 所以它周围的候选方块就只剩下 4 个. 让我们来看看 C 下面的那个格子, 它目前的 G 是14, 如果通过 C 到达它的话, G将会是 10 + 10, 这比 14 要大, 因此我们什么也不做.

        然后我们继续从 "开启列表" 中找出 F 值最小的, 但我们发现 C 上面的和下面的同时为 54, 这时怎么办呢? 这时随便取哪一个都行, 比如我们选择了 C 下面的那个方块 D.

        D 右边已经右上方的都是墙, 所以不考虑, 但为什么右下角的没有被加进 "开启列表" 呢? 因为如果 C 下面的那块也不可以走, 想要到达 C 右下角的方块就需要从 "方块的角" 走了, 在程序中设置是否允许这样走. (图中的示例不允许这样走)

        就这样, 我们从 "开启列表" 找出 F 值最小的, 将它从 "开启列表" 中移掉, 添加到 "关闭列表". 再继续找出它周围可以到达的方块, 如此循环下去...

        那么什么时候停止呢? —— 当我们发现 "开始列表" 里出现了目标终点方块的时候, 说明路径已经被找到.

如何找回路径

        如上图所示, 除了起始方块, 每一个曾经或者现在还在 "开启列表" 里的方块, 它都有一个 "父方块", 通过 "父方块" 可以索引到最初的 "起始方块", 这就是路径.

将整个过程抽象

把起始格添加到 "开启列表" 
do 

       寻找开启列表中F值最低的格子, 我们称它为当前格. 
       把它切换到关闭列表. 
       对当前格相邻的8格中的每一个 
          if (它不可通过 || 已经在 "关闭列表" 中) 
          { 
                什么也不做. 
           } 
          if (它不在开启列表中) 
          { 
                把它添加进 "开启列表", 把当前格作为这一格的父节点, 计算这一格的 FGH 
          if (它已经在开启列表中) 
          { 
                if (用G值为参考检查新的路径是否更好, 更低的G值意味着更好的路径) 
                    { 
                            把这一格的父节点改成当前格, 并且重新计算这一格的 GF 值. 
                    } 
} while( 目标格已经在 "开启列表", 这时候路径被找到) 
如果开启列表已经空了, 说明路径不存在.

最后从目标格开始, 沿着每一格的父节点移动直到回到起始格, 这就是路径.

主要代码

程序中的 "开启列表" 和 "关闭列表"

 
1
List<Point> CloseList;
List<Point> OpenList;

Point 类

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Point
{
    public Point ParentPoint { get; set; }
    public int F { get; set; }  //F=G+H
    public int G { get; set; }
    public int H { get; set; }
    public int X { get; set; }
    public int Y { get; set; }
 
    public Point(int x, int y)
    {
        this.X = x;
        this.Y = y;
    }
    public void CalcF()
    {
        this.F = this.G + this.H;
    }
}

寻路过程

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public Point FindPath(Point start, Point end, bool IsIgnoreCorner)
{
    OpenList.Add(start);
    while (OpenList.Count != 0)
    {
        //找出F值最小的点
        var tempStart = OpenList.MinPoint();
        OpenList.RemoveAt(0);
        CloseList.Add(tempStart);
        //找出它相邻的点
        var surroundPoints = SurrroundPoints(tempStart, IsIgnoreCorner);
        foreach (Point point in surroundPoints)
        {
            if (OpenList.Exists(point))
                //计算G值, 如果比原来的大, 就什么都不做, 否则设置它的父节点为当前点,并更新G和F
                FoundPoint(tempStart, point);
            else
                //如果它们不在开始列表里, 就加入, 并设置父节点,并计算GHF
                NotFoundPoint(tempStart, end, point);
        }
        if (OpenList.Get(end) != null)
            return OpenList.Get(end);
    }
    return OpenList.Get(end);
}

下载代码

        

本文链接: http://www.cnblogs.com/technology/archive/2011/05/26/2058842.html

A*寻路算法浅析

A*算法:A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好。(像这种专业的概念的解释,我们还是交给度娘来做吧)...
  • yiyikela
  • yiyikela
  • 2015年05月28日 21:59
  • 4139

我见过的最容易读懂的 a*算法(A*寻路初探)

http://blog.vckbase.com/panic/archive/2005/03/20/3778.html A*寻路初探...
  • windcao
  • windcao
  • 2007年03月19日 16:31
  • 2355

A*寻路算法

实现原理算法名称:A*算法 应用场景:游戏里的自动寻路 原理: 1,从起点开始找它周围可以走的格子,算出可走格子中F值最小的格子,再就以这个格子作为新的中心点,又同样找其周围可以走的格子,以此类...
  • u010223072
  • u010223072
  • 2016年03月05日 17:33
  • 3111

A*寻路算法入门(一)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供...
  • mydo
  • mydo
  • 2015年11月21日 20:45
  • 2435

A*寻路算法与它的速度

如果你是一个游戏开发者,或者开发过一些关于人工智能的游戏,你一定知道A*算法,如果没有接触过此类的东东,那么看了这一篇文章,你会对A*算法从不知道变得了解,从了解变得理解。我不是一个纯粹的游戏开发者,...
  • lufy_Legend
  • lufy_Legend
  • 2010年07月14日 10:59
  • 32689

A*寻路算法

A*简介图搜索技术在游戏编程中无处不在,无论什么游戏
  • qp120291570
  • qp120291570
  • 2014年10月27日 20:51
  • 3290

我的游戏框架基础构建篇(A* 寻路算法实现 )

一、控件功能描述         本控件主要是实现游戏地图中寻路算法的一个助手,帮助寻找二维地图上从一个点到另一个点的最优路线0 二、实现策略          实现的策略我主要是参考的 htt...
  • xzben
  • xzben
  • 2015年01月09日 11:59
  • 457

A*寻路算法(曼哈顿距离)

前一些天,在群有人问到A*算法的问题。之前我已经有实现过,并将之放到github上(https://github.com/XJM2013/A_Star);有兴趣的可以下载下来看看。 这里上传了一个相当...
  • a374826954
  • a374826954
  • 2015年06月08日 00:00
  • 3728

A*寻路算法的lua实现

前言:又好久没写blog了,感觉有点“颓废”了,最近认识好多好多同龄人,也是大学刚毕业,觉得他们很优秀,认识到自己跟他们的差距,有点自愧不如。没写blog当然也有一部分原因是因为工作,本来经验就有点欠...
  • s10141303
  • s10141303
  • 2014年10月12日 15:35
  • 5296

A*(也叫A star, A星)寻路算法Java版

A*(也叫A star, A星)寻路算法Java版 寻路算法有很多种,A*寻路算法被公认为最好的寻路算法。 原创文章,转载请注明出处:http://blog.csdn.net/ruils/articl...
  • u012379847
  • u012379847
  • 2014年11月04日 10:43
  • 4272
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:理解A*寻路算法具体过程
举报原因:
原因补充:

(最多只允许输入30个字)