四元数入门

4元数宝典

这是国内找不到的超好文章。(为什么大陆的4元数文章很垃圾呢?)
(翻译中。。。奉献给大家~~)

70秒即懂,能使用,用四元数,4元数,阔特尼恩,Quaternion旋转
(C) 中田  亨  (独立行政法人  产业技术综合研究所  数字人类研究中心  研究员 博士(工学)) 
2003年11月25日

★这个页面的对象读者
想把三次元的旋转,用CG等定量地处理的人
使用欧拉角(Euler Angles)的话,不懂得其道理的人 
卡尔丹角和欧拉角(Cardan Angles)不能区别的人 
对吉恩瓦尔洛克很困惑的人
但是,对数学之类麻烦的事情很讨厌的人
想要实例程序的人 
没有时间的人

★旋转篇:
 我将说明使用了四元数(si yuan shu, quaternion)的旋转的操作步骤
(1)四元数的虚部,实部和写法
所谓四元数,就是把4个实数组合起来的东西。
4个元素中,一个是实部,其余3个是虚部。
比如,叫做Q的四元数,实部t而虚部是x,y,z构成,则像下面这样写。
Q = (t; x, y, z) 
又,使用向量 V=(x,y,z),
Q = (t; V)  
也可以这么写。

正规地用虚数单位i,j,k的写法的话,
Q = t + xi + yj + zk 
也这样写,不过,我不大使用

(2)四元数之间的乘法
虚数单位之间的乘法 
ii = -1, ij = -ji = k (其他的组合也是循环地以下同文) 
有这么一种规则。(我总觉得,这就像是向量积(外积),对吧) 
用这个规则一点点地计算很麻烦,所以请用像下面这样的公式计算。

A = (a; U) 
B = (b; V) 
AB = (ab - U·V; aV + bU + U×V)
不过,“U·V”是内积,「U×V」是外积的意思。
注意:一般AB<>BA所以乘法的左右要注意!

(3)3次元的坐标的四元数表示
如要将某坐标(x,y,z)用四元数表示,
P = (0; x, y, z) 
则要这么写。
 
另外,即使实部是零以外的值,下文的结果也一样。用零的话省事所以我推荐。

(4)旋转的四元数表示
以原点为旋转中心,旋转的轴是(α, β, γ)
(但 α^2 + β^2 + γ^2 = 1), 
(右手系的坐标定义的话,望向向量(α, β, γ)的前进方向反时针地) 
转θ角的旋转,用四元数表示就是,
Q = (cos(θ/2); α sin(θ/2), β sin(θ/2), γ sin(θ/2)) 
R = (cos(θ/2); -α sin(θ/2), -β sin(θ/2), -γ sin(θ/2)) 
(另外R 叫 Q 的共轭四元数。)

那么,如要实行旋转,
则 R P Q = (0; 答案)

请像这样三明治式地计算。这个值的虚部就是旋转之后的点的坐标值。
 (另外,实部应该为零。请验算看看)

*未完。。。


instemast_REAL 2007-2-24 19:04:57
 
 注册: 2007-2    状态: Offline 1   Top 
 
instemast_REAL
Exp:124

侦察兵
  发表于: 2007-2-24 19:06:00 档案 | 短信 | 树状 | 收藏 | 编辑 | 删除 | 引用   
 

--------------------------------------------------------------------------------
Re:4元数宝典

/// Quaternion.cpp 
/// (C) Toru Nakata, toru-nakata@aist.go.jp 
/// 2004 Dec 29 
  
#include <math.h> 
#include <iostream.h> 
  
/// Define Data type 
typedef struct 

              double t; // real-component 
              double x; // x-component 
              double y; // y-component 
              double z; // z-component 
} quaternion; 
  
  
Kakezan 
quaternion Kakezan(quaternion left, quaternion right) 

              quaternion ans; 
              double d1, d2, d3, d4; 
  
              d1 =  left.t * right.t; 
              d2 = -left.x * right.x; 
              d3 = -left.y * right.y; 
              d4 = -left.z * right.z; 
              ans.t = d1+ d2+ d3+ d4; 
  
              d1 =  left.t * right.x; 
              d2 =  right.t * left.x; 
              d3 =  left.y * right.z; 
              d4 = -left.z * right.y; 
              ans.x =  d1+ d2+ d3+ d4; 
  
              d1 =  left.t * right.y; 
              d2 =  right.t * left.y; 
              d3 =  left.z * right.x; 
              d4 = -left.x * right.z; 
              ans.y =  d1+ d2+ d3+ d4; 
  
              d1 =  left.t * right.z; 
              d2 =  right.t * left.z; 
              d3 =  left.x * right.y; 
              d4 = -left.y * right.x; 
              ans.z =  d1+ d2+ d3+ d4; 
              
              return ans; 

  
Make Rotational quaternion 
quaternion MakeRotationalQuaternion(double radian, double AxisX, double AxisY, double AxisZ) 

              quaternion ans; 
              double norm; 
              double ccc, sss; 
              
              ans.t = ans.x = ans.y = ans.z = 0.0; 
  
              norm = AxisX *  AxisX +  AxisY *  AxisY +  AxisZ *  AxisZ; 
              if(norm <= 0.0) return ans; 
  
              norm = 1.0 / sqrt(norm); 
              AxisX *= norm; 
              AxisY *= norm; 
              AxisZ *= norm; 
  
              ccc = cos(0.5 * radian); 
              sss = sin(0.5 * radian); 
  
              ans.t = ccc; 
              ans.x = sss * AxisX; 
              ans.y = sss * AxisY; 
              ans.z = sss * AxisZ; 
  
              return ans; 

  
Put XYZ into  quaternion 
quaternion PutXYZToQuaternion(double PosX, double PosY, double PosZ) 

              quaternion ans; 
  
              ans.t = 0.0; 
              ans.x = PosX; 
              ans.y = PosY; 
              ans.z = PosZ; 
  
              return ans; 

  
/ main 
int main() 

              double px, py, pz; 
              double ax, ay, az, th; 
              quaternion ppp, qqq, rrr; 
  
              cout << "Point Position (x, y, z) " << endl; 
              cout << "  x = "; 
              cin >> px; 
              cout << "  y = "; 
              cin >> py; 
              cout << "  z = "; 
              cin >> pz; 
              ppp = PutXYZToQuaternion(px, py, pz); 
  
              while(1) { 
                            cout << "/nRotation Degree ? (Enter 0 to Quit) " << endl; 
                            cout << "  angle = "; 
                            cin >> th; 
                            if(th == 0.0) break; 
  
                            cout << "Rotation Axis Direction ? (x, y, z) " << endl; 
                            cout << "  x = "; 
                            cin >> ax; 
                            cout << "  y = "; 
                            cin >> ay; 
                            cout << "  z = "; 
                            cin >> az; 
  
  
                            th *= 3.1415926535897932384626433832795 / 180.0; /// Degree -> radian; 
  
                            qqq = MakeRotationalQuaternion(th, ax, ay, az); 
                            rrr = MakeRotationalQuaternion(-th, ax, ay, az); 
  
                            ppp = Kakezan(rrr, ppp); 
                            ppp = Kakezan(ppp, qqq); 
  
                            cout << "/nAnser X = " << ppp.x 
                                          <<  "/n      Y = " << ppp.y 
                                          <<  "/n      Z = " << ppp.z << endl; 
  
              } 
  
              return 0; 

*未完。。。


 
 

四元数的长处和缺点

冰川球的吉恩瓦尔。

吸收前后左右的倾斜而保持水平

长处

“直观的”

如果给出旋转轴和旋转角度的话,就算不考虑欧拉角之类的,也可以立即计算。

“连续性”

表示相似的旋转的四元数的值也相似。没有吉恩瓦尔洛克现象。
(所谓吉恩瓦尔洛克就是,“北极和南极等特殊点,在自转的情况下是不能动的。”“在中国餐馆的圆桌上,
放在正中央的酱油怎么转也转不近”等,有效的自由度和次元丧失的现象。在软件中成为例外处理的困难因而是麻烦事。本来吉恩瓦尔是把罗盘针吊起来的机构。为了使得即便船摇晃罗盘针也保持水平而不摇晃。吉恩瓦尔的柄把罗盘针晃晃荡荡地吊着,但若使得这些东西的方向一致了,就不能晃了(=洛克lock),振动传到罗盘针了。)

“记忆效率好,计算快”

旋转能够只用4个数值记述。与阿弗因变换矩阵等相比,不用记忆。减少不必要的计算。
 
缺点

“从外观上看不知道表示什么意思”
 
从四元数的成分来看,其表示什么意思,一眼看不出来。
 
“不能表示多圈旋转”
如你所见,使用cos和sin,所以θ是10度,370度,还是-350度,不能区别。
想要制作咕噜咕噜转许多圈的动画的情况下,不想只旋转一遍,请仔细区分。


“是以原点为中心的旋转”
想以原点以外为中心的情况,请让坐标穿上木屐,旋转,然后还原木屐。
(下文的一般位移篇也check一下吧!)

四元数旋转的软件的源代码
<<source code 贴过了>>

一般位移篇:作为旋转以外的变形的扩大缩小(与并进)的步骤

考虑四元数的标量倍,就可以将旋转篇的结果坐标给扩大缩小。比如,
P = (0; x, y, z)

(另外实部可以为任意值。0好算)

kQ = (kcos(θ/2); kα sin(θ/2), kβ sin(θ/2), kγ sin(θ/2))

kR = (kcos(θ/2); -kα sin(θ/2), -kβ sin(θ/2), -kγ sin(θ/2))
  
(KR是KQ的共轭四元数。)

则有,

kR P kQ = ( 0; 旋转后的XYZ坐标的k的自乘倍)

这样,就可以将以原点为中心的旋转,和以原点为中心的扩大缩小一起操作了。
这表示,可以自由地操作以原点为准的方位及其距离。就是说,将一点(X,Y,Z)映射到任意的点(X',Y',Z')的变换,可以用四元数表示。但X=Y=Z=0的情况例外。

制作你所希望的四元数篇:实施某旋转的四元数的作法

表示将一点A,移到别的点B的以原点为中心的旋转的四元数,像这样制作。

旋转轴(α,β,γ)和位置向量的外积 B×A 平行且同向。(A和B的顺序,按四元数R和Q的乘法的顺序交替。本文的乘法顺序的定义的话,就是BA的顺序。)作了除法之后,将把长度改为1。

(α,β,γ)= (B×A) / (|B×A|)

cos(θ)是,将位置向量的内积 B·A 除以|B|·|A|。
cos(θ)= (B·A) / (|B|·|A|)

根据三角函数的半角公式,
cos(θ/2)=±√{ 0.5 * (1 + cosθ) } 
sin(θ/2)=±√{ 0.5 * (1 - cosθ) }

正负号呢,由于 0°≦θ≦180°所以,cos(θ/2)≧0 且 sin(θ/2)≧0 就是说,两边都为正。
cos(θ/2)=√{ 0.5 * (1 + cosθ) } 
sin(θ/2)=√{ 0.5 * (1 - cosθ) }

也要进行扩大缩小的情况、k = √{|B|/|A|}

从欧拉角到四元数的变换及其逆变换的问题(背景说明篇)

这个问题时不时被谈论,由于数学原因和数学之外的事情而很难。
 
3次元的旋转呢,
(1) 作为旋转轴的直线
(2) 旋转角度
有这两个信息,就可以表示。这便是“万能的3次元旋转表示”。

把这样的单次的旋转叫做single rotation。

(注意:single rotation 没有旋转中心点。只有旋转轴。如果是,关于像球形关节这样的旋转的,拥有不同旋转轴的single rotation 复合而成的 rotation sequence ,的话,就能够考虑旋转中心点了。)
(*译注:此句的复句结构复杂,但无论怎么理解都不影响意思!)
 
(注意:四元数将single ratation以旋转轴和旋转角度的信息来直接地表示。
欧拉角呢,是要把一个single rotation,用分解为3个single rotation的方式来表示。可以说故意搞复杂了。而且,蕴含着引起吉恩瓦尔洛克的问题的可能性。)


“欧拉角-->四元数”
考虑像这样的直接的变换是非常难的问题。
正确的是,应该取,
像“欧拉角-->万能表示-->四元数”
这样的,
“一种表式形式-->万能表示-->别的表示形式”
的路径。我想这最安全也易思考。

 


文章主要内容在前面,后面闲谈比较多。而且后面的语法有点乱(科学家语文不好,还喜欢用复杂句式)
但注意,他告诉了我们什么是真正的欧拉角,这有点出乎意料,和一般d3d书上说的不一样。

变换困难的数学原因

四元数:原点不在旋转轴上的情况,必须将其木屐(偏移量)用别的途径表示。
欧拉角:不仅有原点的偏移量的问题,而且,产生吉恩瓦尔洛克现象情况下必须做例外处理。还有,轴的旋转顺序(虽说有惯例但)不统一。(总的来说欧拉角有太多使用上的难点。)

变换困难的数学之外的原因

数据格式因软件而异。“一段变换程序”只在一个公司的软件范围内通用。 
坐标轴的设定不同。右手系还是左手系不统一。还有“向上”和“向右”是哪个轴等问题。也有历史原因,所以不统一。
角度的正负方向的决定方式难以知晓。数据格式与坐标轴设定的技术,光看源代码不知道。
(特别是,拥有三个角度的欧拉角很麻烦)
既如此,为什么要用欧拉角呢?
because there are many gyros whitch are roll,pitch and yaw,in the output?
像大炮的底座一样地,机构使用了roll,pitch,yaw的情况也是有的。
(注:gyro = gyrocompass旋转罗盘,gyroscope陀螺仪)

欧拉角是什么

Euler考虑到,“一个三次元的single rotation,可以以组合三个以坐标轴作为旋转轴的三次元旋转的方式来表示”。这是广义的欧拉角。
就是说,以,从坐标系看来倾斜的轴,为旋转轴的旋转,搞得好的话,首先以Z轴中心旋转α度,然后以X轴中心旋转β度,最后以Z轴中心旋转γ度,以这种方式,是可以作出一模一样的旋转的。(发生吉恩瓦尔洛克现象的情况,失去了解的一义性,成为了件麻烦的事情。)
欧拉自己,把旋转轴的选择方式使用了Z-X-Z。这个选轴顺序的情况,是狭义的欧拉角。(考虑陀螺的运动的时候,首先把陀螺的高速自转用Z轴旋转表示,把陀螺的芯棒倒向地面的旋转用X轴旋转表示把陀螺芯棒的水平旋转用Z轴旋转表示。)

世上像Z-Y-Z、X-Z-X, Y-X-Y之类的模式,似乎也有人称之为欧拉角的。
轴的选择方式,也有,像X-Y-Z,Y-Z-Z这样的3轴顺次使用的模式。(另外,3个轴的立场不是平等的。存在着由旋转操作的先后所引起的不同

。)也有人把这些认作是广义的欧拉角,而,只承认狭义的欧拉角的人是误解之源。

X-Y-Z式是被频繁使用的模式。这被叫做roll,pitch,yaw角式,也有人叫卡尔丹角(Cardan angles)。

从欧拉角到四元数表示

这是极其简单的,把欧拉角的3次旋转,分别用四元数表示,顺次作乘法即可。

从四元数到欧拉角

「オイラー角→四元数」の逆変換を考えることになります。公式化してもいいのですが、オイラー角がZ-X-Z式なのかX-Y-Z式なのかの違い

で、大きく変わってしまいます。シンバルロック発生時には、公式の中でゼロ割りが起きますので、その処理も面倒みてください。
シングルローテーションの不思議
我们来考虑一下“欧拉角-〉四元数”的逆变换。虽说可以公式化但是,因欧拉角是Z-X-Z式还是X-Y-Z式的不同,就会有大的变化。吉恩瓦尔洛

克现象发生的时候,在公式中会发生零作除数的情况,其处理也麻烦请看。
single rotation的不可思议
一个single rotation,可以用一个四元数来表示的。
于是可以说,进行N次single rotation的旋转,能够用N个四元数的积的一个四元数来表示。也就是说,多个single rotation的串珠实行,无

视其过程,只看其结果的话,可以只用1个四元数表示。
结果,就算咕噜咕噜地转,也只不过是进行了1个single rotation。就算把足球转到那边,再转回这边,按照初期姿势和最终姿势,完全没有

移动的点至少有2个!或者说,在1次旋转中,到最终姿势,只是跳个一下就可以了。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值