关闭

python pickle的用法实例代码

import pickle a1 = ‘apple’ b1 = {1: ‘One’, 2: ‘Two’, 3: ‘Three’} c1 = [‘fee’, ‘fie’, ‘foe’, ‘fum’] f1 = open(‘temp.pkl’, ‘wb’) pickle.dump(a1, f1, True) pickle.dump(b1, f1, True)...
阅读(25) 评论(0)

深度学习:多层感知机MLP数字识别的代码实现

深度学习我看的是neural network and deep learning 这本书,这本书写的真的非常好,是我的导师推荐的。这篇博客里的代码也是来自于这,我最近是在学习Pytorch,学习的过程我觉得还是有必要把代码自己敲一敲,就像当初学习机器学习一样。也是希望通过这个代码能够加深对反向传播原路的认识。在下面的代码中,比较复杂的部分就是mini_batch部分了,我们一定要有清晰的认识,我们在...
阅读(39) 评论(0)

python the method of super function

class C: def init(self): print(‘enter C’) print(‘leave C’) class A: def init(self): print(“enter A”) print(“leave A”) class B(A): # A –> C...
阅读(29) 评论(0)

深度学习:反向传播与基本原理

我们要证明得是这四个公式 有了这个四个公式,我们得反响传播就可以递推得到。 BP1公式: 这个是输出层误差方程,这个方程好像没啥好说的BP2公式 从这个公式我们可以通过高阶层的误差,通过的递推的方式求出每一层的误差BP3公式 BP4公式 从BP4公式我们可以看到,如果前一层的输出函数过于小的话 w参数学习就会变慢。...
阅读(27) 评论(0)

Python处理时间

from dateutil.parser import parse a = parse(‘2011-01-03’) print(a) from dateutil.parser import parse a = parse(‘Jan 31,1997 10:45 PM’) print(a) from dateutil.parser import parse...
阅读(29) 评论(0)

Adaboost

这个是周志华老师的机器学习书里面的公式,表明如果基础分类器是弱分类器的 情况下,集成之后效果的效果会更好,因为我们从公式中可以看到,基分类器的数目T增长的时候,错误率是指数级下降的。 这个公式是怎么来的呢? 这个是周志华老师机器学习里的课后习题,现在咱们就来证明一下 到此我们对集成的直观理解是,如果我们有很多基分类器,他们之间独立,让他们各自预测之后,通过投票产生结果,如果数量足够多,那我们正确...
阅读(21) 评论(0)

Python defaultdict用法

from collections import defaultdict strings = (‘puppy’, ‘kitten’, ‘puppy’, ‘puppy’, ‘weasel’, ‘puppy’, ‘kitten’, ‘puppy’) counts = defaultdict(lambda: 0) for item in strings:...
阅读(25) 评论(0)

pandas删除和插入数据

df = pd.read_csv(‘1.csv’) data = df.pop(‘c’) print(data) print(df) df.insert(0,’data’,data) print(df)...
阅读(22) 评论(0)

pandas把所有大于0的数设置为1

df = pd.read_csv(‘hahaha.csv’) df[df>0] = 1 print(df)...
阅读(36) 评论(0)

python list 返回索引的方法

a = [1,2,7,6,7,8] b = 7 c = a.index(b) print(c)...
阅读(28) 评论(0)

pandas画图

Serise上的画图 import matplotlib.pyplot as plt import pandas as pd from pandas import * import numpy as np s = Series(np.random.rand(10).cumsum(),index=np.arange(0,100,10)) s.plot() plt...
阅读(43) 评论(0)

python matplot画图

import matplotlib.pyplot as plt import pandas as pd import numpy as np fig = plt.figure() ax = fig.add_subplot(2,2,1) ax.plot(np.random.rand(100)) ticks = ax.set_xticks([0,25,50,75])...
阅读(30) 评论(0)

pandas 计算指标/哑变量

import pandas as pd from pandas import * import numpy as np df = DataFrame({‘key’:[‘b’,’b’,’a’,’c’,’a’,’b’],’data1’:range(6)}) result = pd.get_dummies(df[‘key’],prefix=’key’) print(resul...
阅读(166) 评论(0)

pandas groupby使用

import pandas as pd from pandas import * import numpy as np df = DataFrame({‘key1’:[‘a’,’a’,’b’,’b’,’a’], ‘key2’:[‘one’,’two’,’one’,’two’,’one’], ‘data1’:...
阅读(49) 评论(0)

pandas 计算指标/哑变量

import pandas as pd from pandas import * import numpy as np df = DataFrame({‘key’:[‘b’,’b’,’a’,’c’,’a’,’b’],’data1’:range(6)}) result = pd.get_dummies(df[‘key’],prefix=’key’) print(resul...
阅读(133) 评论(0)
64条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:6450次
    • 积分:679
    • 等级:
    • 排名:千里之外
    • 原创:63篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论