关闭

Person re-identification by Local Maximal Occurrence representation and metric learning

标签: 行人检索
1479人阅读 评论(0) 收藏 举报
分类:

这是中科院关于Person re-identification CVPR 2015

  1. Local Maximal Occurrence Feature
    3.1. Dealing with Illumination Variations
    首先对图像使用 Retinex 进行了预处理,前后结果如下图所示:
    这里写图片描述

对处理后的图像,我们通过计算 HSV color histogram 来提取颜色特征。
In addition to color description, we also apply the Scale Invariant Local Ternary Pattern (SILTP) [26] descriptor for illumination invariant texture description

3.2. Dealing with Viewpoint Changes
这里写图片描述

4.Cross-view Quadratic Discriminant Analysis
4.1. Bayesian Face and KISSME Revisit
这里简单介绍了一下我们参考的两个方法,Bayesian Face and KISSME

4.2. XQDA
这里我们提出了自己的方法,经过公式推导,最后的优化公式为:
这里写图片描述

5 Experiments
这里写图片描述

这里写图片描述

这里写图片描述

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:329487次
    • 积分:4938
    • 等级:
    • 排名:第5722名
    • 原创:169篇
    • 转载:3篇
    • 译文:2篇
    • 评论:192条
    最新评论