Efficient Coarse-to-Fine PatchMatch for Large Displacement Optical Flow

原创 2016年08月30日 14:48:50

CVPR 2016
本文提出了一个快速计算大位移光流的算法。
一般的算法在 tiny structures with large motions 情况下容易出现误差。

这里写图片描述

算法采用多尺度框架,不同尺度可以提取出不同的信息。

这里写图片描述

这里写图片描述
两幅图像 I1,I2,从I1里提取一系列种子点。网格提取,每个d*d区域只有一个种子点。
然后从顶层开始,建立种子点的对应关系。然后根据上层的对应关系计算下一层的对应关系。

这里写图片描述

这里写图片描述

这里写图片描述

相关文章推荐

Optical Flow学习心得

怎么通过上一帧(下一帧)图像+光流场合成下一帧(上一帧)图像 I(x,y,t)=I(x+u,y+v,t+1):从t+1帧图像通过optical flow生成的u,v合成第t帧图像 I(x+u,y+...
  • jpday
  • jpday
  • 2016年12月02日 09:40
  • 1376

人脸识别 - Sparsifying Neural Network Connections for Face Recognition

CVPR2016 香港中文大学人脸识别研究Sparsifying Neural Network Connections for Face Recognition本文主要思路是先训练一个 Baseli...

caffe小问题汇总(持续更新) PS:所有问题均在caffe-windows下产生 1、为什么AlexNet中,InnerProduct_Layer(fc8)层的输出可以直接作为Accuracy

caffe小问题汇总(持续更新) PS:所有问题均在caffe-windows下产生 1、为什么AlexNet中,InnerProduct_Layer(fc8)层的输出可以直接作为Accu...

论文阅读:Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis

这篇论文是在2017年3月22日发表在CVPR上的,作者在这篇论文中提出了一个叫做深度从粗糙到精细化的多任务卷积神经网络(Deep MANTA),该模型可以用于对一张图片中的车辆进行多任务的分析。该网...

论文笔记:Label Refinement Network for Coarse-to-Fine Semantic Segmentation

本文设计了一个Coarse-to-Fine的深度学习网络Label Refinement Network,来进行语义分割任务。主要将低分辨率下的分割标签和卷积后的特征进行结合,获得一个更加精确的分割结...

Coarse-to-Fine Auto-encoder Networks.pdf

  • 2016年12月06日 09:50
  • 702KB
  • 下载

Need ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION permission to get scan r

安卓6.0多了新的特性,也就是打开app时,经常会提醒你是否允许xx应用获取xx权限,这就是新特性的表现。 也就是说,有的权限,光是在manifest里获取还不够,还要让用户手动允许才能获得这项...

深度学习(十七)基于改进Coarse-to-fine CNN网络的人脸特征点定位-ICCV 2013

基于改进Coarse-to-fine CNN网络的人脸特征点定位 原文地址:http://blog.csdn.net/hjimce/article/details/50099115 作者:hji...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Efficient Coarse-to-Fine PatchMatch for Large Displacement Optical Flow
举报原因:
原因补充:

(最多只允许输入30个字)